scholarly journals Semi-continous beam-to-column joints for slim-floor systems in seismic zones

Author(s):  
Adrian Ciutina ◽  
Cristian Vulcu ◽  
Rafaela Don

The slim-floor building system is attractive to constructors and architects due to the integration of steel beam in the overall height of the floor, which leads to additional floor-to-floor space, used mostly in acquiring additional storeys. The concrete slab offers natural fire protection for steel beams, while the use of novel corrugated steel sheeting reduces the concrete volume, and replaces the secondary beams (for usual spans of steel structures). Currently the slim-floor solutions are applied in non-seismic regions, and there are few studies that consider continuous or semi-continuous fixing of slim-floor beams. The present study was performed with the aim to develop reliable end-plate bolted connections for slim-floor beams, capable of being applicable to buildings located in areas with seismic hazard. It is based on numerical finite element analysis, developed in two stages. In a first stage, a finite element numerical model was calibrated based on a four point bending test of a slim-floor beam. Further, a case study was analysed for the investigation of beam-to-column joints with moment resisting connections between slim-floor beams and columns. The response was investigated considering both sagging and hogging bending moment. The results are analysed in terms of moment-rotation curve characteristics and failure mechanism. 

Author(s):  
Vu Quang Viet ◽  
Hoang Ha ◽  
Pham Thai Hoan

In this study, the ultimate bending moment of circular concrete-filled double skin steel tubes (CFDSTs) was investigated. A CFDSTs made of two concentric circular steel tubes with concrete infill and M16 shear connector system was fabricated. The four-point bending test of the 10 m long CFDST consisting of outer and inner steel tubes with 914.4 mm and 514.4 mm in diameter, respectively, was carried out and the ultimate bending moment of the CFDST was investigated. A finite element (FE) simulation of the CFDSTs subjected to bending was developed using the commercial software ABAQUS and the accuracy of the developed FE model was verified by comparing to the experimental result. The ultimate bending moment of CFDSTs was then evaluated with respect to different concrete infill compressive strengths and yield strengths of the steel tubes. The corresponding design ultimate bending moments of the CFDST with regard to the design codes AISC and EC4 were also computed. The results revealed that EC4 and AISC can accurately predict the ultimate moment capacities of the CFDST with shear connector. Keywords: ultimate bending moment; concrete-filled double skin tube; shear connector system; finite element analysis. Received 19 November 2018, Revised 04 January 2019, Accepted 04 January 2019


2019 ◽  
Vol 15 (1) ◽  
pp. 62-70
Author(s):  
Raghabendra Yadav ◽  
Binay Kumar Sah ◽  
Indra Narayan Yadav ◽  
Dinesh Kumar Gupta

The most commonly and popular type of bridge used in Nepal is T beam bridge due to it's simple in design, construction and maintenance than other types. T-beam Bridge comprises of a concrete slab integral with girders. This type of bridges is more preferred when it comes to connectivity to short distances. So, it is necessary to update the analysis and design methods. Here, in this paper, there is an attempt to study the comparison of maximum bending moment due to live load in a girder and slab bridge for varying span length as 15m, 20m and 25m respectively of T Beam bridge using conventional method. The same bridge is analyzed as a three-dimensional model in finite element software as SAP2000, apply the same loading done for conventional methods and compared the results. The maximum bending moment results obtained from finite element model are lesser than Courbon's method which looks more conservative.


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2011 ◽  
Vol 52-54 ◽  
pp. 43-48 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

This paper presents a non-linear numerical investigation of surface cracks in round bars under bending moment by using ANSYS finite element analysis (FEA). Due to the symmetrical analysis, only quarter finite element (FE) model was constructed and special attention was given at the crack tip of the cracks. The surface cracks were characterized by the dimensionless crack aspect ratio, a/b = 0.6, 0.8, 1.0 and 1.2, while the dimensionless relative crack depth, a/D = 0.1, 0.2 and 0.3. The square-root singularity of stresses and strains was modeled by shifting the mid-point nodes to the quarter-point locations close to the crack tip. The proposed model was validated with the existing model before any further analysis. The elastic-plastic analysis under remotely applied bending moment was assumed to follow the Ramberg-Osgood relation with n = 5 and 10. J values were determined for all positions along the crack front and then, the limit load was predicted using the J values obtained from FEA through the reference stress method.


2020 ◽  
Vol 27 (1) ◽  
pp. 1-5
Author(s):  
Hanadi Naji ◽  
Nibras Khalid ◽  
Mutaz Medhlom

This paper aims at presenting and discussing the numerical studies performed to estimate the mechanical and thermal behavior of RC flat slabs at elevated temperature and fire. The numerical analysis is carried out using finite element programs by developing models to simulate the performance of the buildings subjected to fire. The mechanical and thermal properties of the materials obtained from the experimental work are involved in the modeling that the outcomes will be more realistic. Many parameters related to fire resistance of the flat slabs have been studied and the finite element analysis results reveal that the width and thickness of the slab, the temperature gradient, the fire direction, the exposure duration and the thermal restraint are important factors that influence the vertical deflection, bending moment and force membrane of the flat slabs exposed to fire. However, the validation of the models is verified by comparing their results to the available experimental date. The finite element modeling contributes in saving cost and time consumed by experiments.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Vishnu Verma ◽  
A. K. Ghosh ◽  
G. Behera ◽  
Kamal Sharma ◽  
R. K. Singh

The miniature disk bending test is used to evaluate the mechanical behavior of irradiated materials and their properties (e.g., yield stress and strain hardening exponent) to determine mainly ductility loss in steel due to irradiation from the load-deflection behavior of the disk specimen. In the miniature disk bending machine the specimen is firmly held between the two horizontal jaws of punch, and an indentor with a spherical ball travels vertically. Analytical solutions for large amplitude plastic deformation become rather unwieldy. Hence, a finite element analysis has been carried out. The finite element model considers contact between the indentor and test specimen, friction between various pairs of surfaces, and elastic plastic behavior. This paper presents the load versus deflection results of a parametric study where the values of various parameters defining the material properties have been varied by ±10% around the base values. Some well-known analytical solutions to this problem have also been considered. It is seen that the deflection obtained by analytical elastic bending theory is significantly lower than that obtained by the elastoplastic finite element solution at relatively small values of load. The finite element solution has been compared with one experimental result and values are in reasonably good agreement. With these results it will be possible to determine the material properties from the experimentally obtained values of load and deflection.


2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


2007 ◽  
Vol 353-358 ◽  
pp. 2855-2859
Author(s):  
W.C. Lee ◽  
Chae Sil Kim ◽  
J.B. Na ◽  
D.H. Lee ◽  
S.Y. Cho ◽  
...  

Since most marine engines are generally very huge and heavy, it is required to keep safety from accidents in dealing them. Several types of lifting lugs have been used to assemble hundred ton–large steel structures and carry the assembled engines. Recently a few crashes have been occurred in carrying engines due to breaking down the lugs. Although the stability evaluation of the lifting lug has therefore been very important for safety, systematic design procedure of the lugs, which includes the structural analysis considering stability, has few reported. This paper describes the three dimensional finite element structural modeling for a lifting lug, the studies for determining the reasonable loading and boundary conditions, and the stability evaluation with the results of structural analyses. It should be very helpful for designing the other types of lifting lugs with safety.


Author(s):  
Ane de Boer ◽  
Max A. N. Hendriks ◽  
Eva O. L. Lantsoght

<p>The Dutch Ministry of Infrastructure and the Environment is concerned with the safety of existing infrastructure and expected re-analysis of a large number of bridges and viaducts. Nonlinear finite element analysis can provide a tool to assess safety; a more realistic estimation of the existing safety can be obtained.</p><p>Dutch Guidelines, based on scientific research, general consensus among peers, and a long-term experience with nonlinear analysis, allow for a reduction of model and user factors and improve the robustness of nonlinear finite element analyses.</p><p>The 2017 version of the guidelines can be used for the finite element analysis of basic concrete structural elements like beams, girders and slabs, reinforced or prestressed. Existing structures, like box-girder structures, culverts and bridge decks with prestressed girders in composite structures can be analysed.</p><p>The guidelines have been developed with a two-fold purpose. First, to advice analysts on nonlinear finite element analysis of reinforced and pre-stressed concrete structures. Second, to explain the choices made and to educate analysts, related to the responsibility of limiting model uncertainty.</p><p>This paper contains an overview of the latest version of the guideline and its latest validation extensions. Most important impact is the extended operational lifetime of an existing reinforced concrete slab structure.</p>


Sign in / Sign up

Export Citation Format

Share Document