scholarly journals Hysteretic performance research on high strength circular concrete-filled thin-walled steel tubular columns

Author(s):  
Jiantao Wang ◽  
Qing Sun

Under violent earthquake motions, the severe damage in critical regions of structures could be ascribed to cumulative damage caused by cyclic loading. Using the high strength (HS) materials in concrete-filled steel tubular (CFST) columns is the effective way and popular tendency to promote the seismic behavior in anti-seismic design. In this paper, an experimental study on the hysteretic performance of high strength circular concrete-filled thin-walled steel tubular columns (HCFTST) columns was carried out. A total of six specimens were tested under constant axial compression combining cyclic lateral loading. The tested parameters were the different combinations of diameter-to-thickness (D/t) ratio, axial compression ratio (n) and concrete cylinder compressive strength (fc).The failure modes, load-displacement hysteretic curves, skeleton curves, dissipated energy and stiffness degradation were examined in detail. Through the experiment analysis result, it indicates that the ultimate limit state is reached as the severe local buckling and rupture of the steel tubes accompanying the core concrete crushing occur. Using high strength materials could have a larger elastic deformation capacity and the higher axial compression ratio within test scopes could motivate the potential of HS materials. In brief, the HCFTST columns with ultra-large D/t ratios under reasonable design could perform excellent hysteretic performance, which can be applied in earthquake-prone regions widely.

2021 ◽  
pp. 136943322199249
Author(s):  
Kun Yang ◽  
Qing-xuan Shi ◽  
Qi Lin

This paper aims at analyzing the failure process, failure modes, characteristics of hysteresis loop and the ductility of 10 high-strength concrete (HSC) columns confined by high-strength complex stirrups under cyclic lateral force and a higher constant axial loading. It is indicated that the hysteresis loop of this type of columns still show plump spindle-shaped at higher axial compression ratio, which shows better ductility, energy dissipation and anti-collapse performance. Therefore, it is an effective measure of setting high-strength stirrups to ensure the good ductility of HSC columns under high axial compression ratio and to increase the limit value of axial compression ratio. The stress of transverse reinforcement is evaluated, which shows that high-strength stirrups have yielded when most of the specimens are destroyed, and the strength of stirrups can be fully developed to provide a better effect of restraint. Based on a large number of experimental data, the relationships between the limit drift, the ductility coefficient of HSC columns and axial compression ratio, stirrup characteristic values, covering layer as well as longitudinal reinforcement ratio are established; the calculation formula of minimum stirrups characteristic value of HSC columns at different seismic levels considering of axial compression ratio is presented.


2011 ◽  
Vol 368-373 ◽  
pp. 248-252
Author(s):  
Bao Sheng Yang ◽  
Yun Yun Li

The influence on columns behaviors of slenderness ratio are analyzed, and the influence on columns’ anti-seismic behavior of axial compression ratio, stirrup ratio and steel form are analyzed through the test on bearing capacity and level load of low cycle reverse of steel reinforced high-strength concrete columns. The bearing capacity of the long columns reduces along with the slenderness ratio increasing and augments along with concrete strength increasing. Probability of suddenly destruct increases along with the column slenderness ratio augmenting through the test. In addition, anti-seismic behavior of columns are effected not only axial compression ratio, but also steel form. Axial compression coefficien of the steel reinforced high-strength concrete columns with different steel form may be adjusted, however, the influence of stirrup ratio is very little on anti-seismic behavior of columns.


2020 ◽  
pp. 136943322096372
Author(s):  
Xiuli Du ◽  
Min Wu ◽  
Hongtao Liu

In order to study the seismic performance of precast short-leg shear wall connected by grouting sleeves (PSSW), the three-dimensional numerical model was established by using the experiment of PSSW subjected to low cyclic loading. Based on good agreement between numerical results and experimental results, the numerical analysis models with different structural parameters of axial compression ratio and splicing position were designed in detail, and the effects of various parameters on the seismic performance of PSSW were analyzed. The results show that the PSSW exhibits wide and stable hysteresis loops, indicating a satisfactory hysteretic performance and an excellent energy consumption capacity. With the increase of the axial compression ratio, the shear capacity of horizontal splice seam is improved, but the ductility coefficient and total energy consumption decrease obviously. The most disadvantageous position of PSSW can be effectively avoided by changing the position of the post pouring seam. The bearing capacity of the specimens is basically stable, and the energy consumption increases significantly, so the post pouring seam of precast wall is recommended to be far away from the bottom section of the wall. In addition, the failure mechanism of different splicing positions was analyzed in detail.


2019 ◽  
Vol 22 (8) ◽  
pp. 1895-1908
Author(s):  
Fangfang Wei ◽  
Zejun Zheng ◽  
Jun Yu ◽  
Yongquan Wang

Concrete filled double-steel-plate composite walls with shear studs, one type of steel–concrete–steel walls, are recently developed and have been used in high-rise buildings, for which fire safety is a big concern. In order to investigate the fire endurance of this new type of concrete filled double-steel-plate composite walls, three specimens with different axial compression ratios and different lengths and intervals of shear studs were tested under one-side ISO-834 standard fire to obtain the temperature distribution, deformation, and detailed failure modes. Each specimen consisted of a concrete filled double-steel-plate composite wall-body and two boundary columns. Moreover, finite-element-based numerical investigations were conducted to confirm and extend experimental findings. All the concrete filled double-steel-plate composite walls failed in compression–flexure mode with the local buckling at the compressive steel plate. The results indicate that the fire endurance of concrete filled double-steel-plate composite walls is significantly affected by the axial compression ratio, the eccentricity of the axial load, and the bond strength between shear studs and concrete. Axial compression ratio, defined as the ratio of axial compression to the nominal compressive capacity of concrete filled double-steel-plate composite walls, has both positive and negative effects on the fire endurance of concrete filled double-steel-plate composite walls. The axial load eccentricity toward the unexposed side is much more detrimental to the fire endurance of concrete filled double-steel-plate composite walls than the one toward the exposed side. In engineering practice, it is recommended that proper intervals (not greater than 300 mm) and lengths (not less than 40 mm) of the shear studs should be used to ensure the bond between concrete and steel plates.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Kun Wang ◽  
Huihui Luo

Four composite joint specimens consisted of concrete-encased steel beams and concrete-encased concrete-filled steel tube (CFST) columns were tested under lateral cyclic loading, in which three specimens were prestressed and the other was not. In the tests, crack distributions and failure modes of the joint specimens were acquired, and the energy dissipation, rigidity degeneration, ductility, and residential deformation were investigated. Meanwhile, the strain variation of longitudinal rebars and I-steel flanges at beam ends as well as steel tubes in panel zones were analysed. The experimental results showed that a type of mixed mode consisting of shear failure in the panel zone and flexural failure at beam ends was found for three prestressed joint specimens, whilst only flexural failure at beam ends was observed for the non-prestressed one, and all joint specimens showed good hysteretic behaviour. In addition, as can be seen from the skeleton curves, the lateral peak loads of prestressed joint specimens could be enhanced to some extent by increasing the prestressing level, and the axial compression ratio had little effect on lateral loads; meanwhile, the ductility and energy dissipation for prestressed joint specimens also could be reduced by increasing the prestressing level and axial compression ratio.


2020 ◽  
pp. 136943322095683
Author(s):  
Bin Rong ◽  
Lei Wang ◽  
Ruoyu Zhang

This paper studied the shear behavior of the connections with external stiffening rings between square steel tubular columns and steel beams by experimental, numerical and analytical methods. Two connections with external stiffening rings were tested under low cyclic loading to investigate the effect of axial compression ratio on the shear behavior and capacity of the connection. The test result showed that the change of the axial compression ratio had little effect on the shear capacity of the connection while the ductility of the connection was decreasing with the increase of the axial compression ratio. Seven nonlinear finite element models were designed to investigate the seismic behavior of the connection under cyclic test. Parametric studies are carried out to study the influence of the following parameters on the shearing capacity and deformation in panel zone: the width and the height of the steel tube in panel zone and the thickness of the external stiffening rings. Finally, based on the model considering the post-buckling strength of the web of the steel tube in panel zone, a calculation formula was fitted by the results of the finite element simulation.


2020 ◽  
Vol 10 (19) ◽  
pp. 7008
Author(s):  
Deyi Xu ◽  
Yang Yang ◽  
Zongping Chen

Due to the advantage of saving indoor space, a special-shaped column frame attracted more attention of the engineers and researchers. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) L-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) on their seismic performance. The results showed that the failure modes of L-shaped specimens included bending failure, bending-torsion failure, and torsion-shear failure with the hysteretic curves exhibiting S shape. With the increase of T/M ratio, cracks on the flange developed more fully, and the height of plastic hinge decreased and torsion bearing capacity improved. Besides, as the T/M ratio increased the twist ductility increased, while displacement ductility decreased. On the other hand, with a higher axial compression ratio, torsion bearing capacity and bending stiffness were both increased. Moreover, the equivalent viscous damping coefficient of bending and torsion were 0.08~0.28 and 0.13~0.23, respectively. The average inter-story drift ratio met the requirements of the Chinese standard. Finally, two modified models were proposed to predict the progression of damage for the L-shaped column under combined loading including torsion.


2014 ◽  
Vol 651-653 ◽  
pp. 1192-1196
Author(s):  
Ji She ◽  
Yun Zou ◽  
Yang Liu ◽  
Zheng Hao Li ◽  
Kai Wen Li

Nonlinear numerical analysis for prefabricated shell wall structure is processed on this paper with the finite element software of ABAQUS. Nonlinear numerical analysis for prefabricated shell wall with vertical joint is processed firstly and numerical analysis results are found to be reasonable when compared with experimental results. Then the influence of factors such as shear strength of joint and axial compression ratio are conparatively analyzed. The results show that shear strength of joint has a greater influence on the bearing capacity and hysteretic performance of the structure and axial compression ratio also has a greater influence on the bearing capacity but less on the hysteretic performance.


Author(s):  
Yadong Bian ◽  
Yichuan Tian ◽  
Yi Zhao ◽  
Long Cheng ◽  
Cheng Hong ◽  
...  

To comprehensively analyze the seismic performance and failure modes of edge joint, which is composed of T-shaped concrete-filled steel tubular column and H-shaped steel beam, the joint was imposed through low frequency cycling loading. Model of edge joint was established by the nonlinear finite element software ABAQUS. The effect of different parameters, such as axial compression ratio and side plate extension length, on the seismic performance were simulated. The results indicates that the buckling of the steel beam occurs at the lateral extension of the side plate due to the strengthening of the side plate; the axial compression ratio has no obvious effect on the ultimate load; the increase of the side plate length can effectively improve the ultimate load.


2013 ◽  
Vol 351-352 ◽  
pp. 901-905
Author(s):  
Zhi Wei Wan ◽  
Yun Zou ◽  
Jie Kong ◽  
Cheng Li

Nonlinear numerical analysis for the stress performance of frame Side Joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as reinforcement ratios, stirrup ratio and axial compression ratio are contrastively analyzed. The results show that reinforcement ratios have a greater influence on the bearing capacity and hysteretic performance of the structure, but the stirrup ratio and the axial compression ratio have less influence.


Sign in / Sign up

Export Citation Format

Share Document