scholarly journals Analytical Simulation of the Seismic Response of a High-Rise RC Building Model

2008 ◽  
Vol 12 (5) ◽  
pp. 1-10 ◽  
2018 ◽  
Vol 192 ◽  
pp. 02002 ◽  
Author(s):  
Yanuar Haryanto ◽  
Buntara Sthenly Gan ◽  
Nanang Gunawan Wariyatno ◽  
Eva Wahyu Indriyati

We evaluated the performance of a high-rise residential building model in Purwokerto, Indonesia due to the seismic load. The evaluation was performed based on seismic loads given in the 2002 and 2012 Indonesian National Standard (SNI) using linear static analysis, dynamic response analysis and pushover analysis. Based on the linear static analysis, the drift ratio decreased by an average of 34.42 and 32.61% for the X and Y directions respectively. Meanwhile, based on the dynamic response analysis, the drift ratio also decreased by an average of 30.74 and 27.33% for the X and Y directions respectively. In addition, the pushover analysis indicates that the performance of this high-rise residential building model is still at Immediate Occupancy (IO) level. The post-earthquake damage state in which the building remains safe to occupy, essentially retaining the pre-earthquake design strength and stiffness of the structure. The risk of life-threatening injury as a result of structural damage is very low. Although some minor structural repairs may be appropriate, these would generally not be required prior to re-occupancy.


Author(s):  
Fabio Rizzo ◽  
Alessandro Pagliaroli ◽  
Giuseppe Maddaloni ◽  
Antonio Occhiuzzi ◽  
Andrea Prota

<p>The paper discusses results of shaking table tests on an in-scale high-rise building model. The purpose was to calibrate a dynamic numerical model for multi-hazard analyses to investigate the effects of floor acceleration. Accelerations, because of vibration of non-structural elements, affect both the comfort and safety of people. The research investigates the acceleration effects of both seismic and wind forces on an aeroelastic in-scale model of a multi-story building. The paper discusses the first phase of experiments and gives results of floor accelerations induced by several different base seismic impulses. Structural analyses were first performed on the full-scale prototype to take soil-structure interaction into account. Subsequently the scale model was designed through aeroelastic scale laws. Shaking table experiments were then carried out under different base accelerations. The response of the model and, in particular, amplification of effects from base to top are discussed.</p>


2018 ◽  
Vol 65 ◽  
pp. 08008
Author(s):  
Syed Muhammad Bilal Haider ◽  
Zafarullah Nizamani ◽  
Chun Chieh Yip

The reinforced concrete structures, not designed for seismic conditions, amid the past earthquakes have shown us the significance of assessment of the seismic limit state of the current structures. During seismic vibrations, every structure encountered seismic loads. Seismic vibrations in high rise building structure subjects horizontal and torsional deflections which consequently develop extensive reactions in the buildings. Subsequently, horizontal stiffness can produce firmness in the high rise structures and it resists all the horizontal and torsional movements of the building. Therefore, bracing and shear wall are the mainstream strategies for reinforcing the structures against their poor seismic behaviours. It is seen before that shear wall gives higher horizontal firmness to the structure when coupled with bracing however it will be another finding that in building model, which location is most suitable for shear wall and bracing to get better horizontal stability. In this study, a 15 story residential reinforced concrete building is assessed and analyzed using building code ACI 318-14 for bracing and shear wall placed at several different locations of the building model. The technique used for analysis is Equivalent Static Method by utilizing a design tool, finite element software named ETABS. The significant parameters examined are lateral displacement, base shear, story drift, and overturning moment.


2011 ◽  
Vol 368-373 ◽  
pp. 2769-2775 ◽  
Author(s):  
Hui Long ◽  
Guo Xing Chen ◽  
Hai Yang Zhuang

This paper selected representative soft site along the subway lines and created two-dimensional overall finite element analysis model about nonlinear dynamic interaction among soil, underground subway station, and ground structure based on Nanjing underground subway station. It explored the seismic response influence of neighboring high-rise structure on the two-layer and three-span island-type underground subway stations. The results showed that the structure near the subway station had a significant constraint effect on the deformation of subway station which is oriented to the structure, and the influence of deformation of subway station which is backward to the structure is related to vibration characteristics of the soil-underground structure interaction system. The influence of neighboring ground structure on the strain stress response of subway station is useful in most part of important nodes. However, this influence is disadvantageous in the outer part of connections of side walls and plates and middle plate-interior column connections.


Sign in / Sign up

Export Citation Format

Share Document