Site Classification and Design Response Spectra for Seismic Code Provisions - (I) Database and Site Response Analyses

2016 ◽  
Vol 20 (4) ◽  
pp. 235-243 ◽  
Author(s):  
Hyung Ik Cho ◽  
◽  
Satish Manandhar ◽  
Dong Soo Kim
2016 ◽  
Vol 20 (4) ◽  
pp. 245-256 ◽  
Author(s):  
Hyung Ik Cho ◽  
◽  
Satish Manandhar ◽  
Dong Soo Kim

1990 ◽  
Vol 27 (3) ◽  
pp. 330-341 ◽  
Author(s):  
A. C. Heidebrecht ◽  
P. Henderson ◽  
N. Naumoski ◽  
J. W. Pappin

Results are presented for 3 soft clay sites forming part of a larger response study of 11 soil sites subjected to earthquakes of varying intensity and frequency content. The results are presented in the form of spectral ratios (surface to rock), base shear coefficients, and foundation factors. They indicate that large amplifications can be expected at structural periods close to the site period. Comparisons are made with the National Building Code of Canada (NBCC) 1990 provisions for base shear coefficients and foundation factors. These show that the NBCC provisions are adequate when the excitation is low or medium period in nature. For high-period excitation of low intensity, high amplifications that exceed the code provisions are produced. Key words: seismic, design, clay, soft, site, response, spectra, amplification, base, shear.


2019 ◽  
Vol 10 (04) ◽  
pp. 1850011 ◽  
Author(s):  
Mohammad Katebi ◽  
Behrouz Gatmiri ◽  
Pooneh Maghoul

This paper investigates topographic effects of rocky valleys with irregular topographic conditions subjected to vertically propagating SV waves of Ricker type using a boundary element code. Valleys with two intersecting slopes, [Formula: see text] and [Formula: see text], are modelled in order to study their combined effects on ground motion. Presented in the form of pseudo-acceleration response spectra, results of this work can be extended to similar topographies. The main findings are: (i) [Formula: see text] (the first slope angle) and [Formula: see text] (L is the half width of the valley and [Formula: see text] is its corresponding height) have amplifying effects, and [Formula: see text] (the second slope angle) has de-amplifying effects on the site response. (ii) [Formula: see text] has a straight effect on intensifying the effects of both [Formula: see text] and [Formula: see text]. (iii) The combined effects of slope angles have been found to be important in modifying the response so more than a single slope should be considered for seismic analysis. (iv) Engineers should use the maximum amplification of 2.4 in case of valleys with the first and second slope angles below [Formula: see text].


2012 ◽  
Vol 55 (4) ◽  
Author(s):  
Francesca Bozzoni ◽  
Carlo Giovanni Lai ◽  
Laura Scandella

The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN) station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram) described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.<br />


1994 ◽  
Vol 84 (1) ◽  
pp. 1-15 ◽  
Author(s):  
John Boatwright

Abstract The vertical components of the S wave trains recorded on the Eastern Canadian Telemetered Network (ECTN) from 1980 through 1990 have been spectrally analyzed for source, site, and propagation characteristics. The data set comprises some 1033 recordings of 97 earthquakes whose magnitudes range from M ≈ 3 to 6. The epicentral distances range from 15 to 1000 km, with most of the data set recorded at distances from 200 to 800 km. The recorded S wave trains contain the phases S, SmS, Sn, and Lg and are sampled using windows that increase with distance; the acceleration spectra were analyzed from 1.0 to 10 Hz. To separate the source, site, and propagation characteristics, an inversion for the earthquake corner frequencies, low-frequency levels, and average attenuation parameters is alternated with a regression of residuals onto the set of stations and a grid of 14 distances ranging from 25 to 1000 km. The iteration between these two parts of the inversion converges in about 60 steps. The average attenuation parameters obtained from the inversion were Q = 1997 ± 10 and γ = 0.998 ± 0.003. The most pronounced variation from this average attenuation is a marked deamplification of more than a factor of 2 at 63 km and 2 Hz, which shallows with increasing frequency and increasing distance out to 200 km. The site-response spectra obtained for the ECTN stations are generally flat. The source spectral shape assumed in this inversion provides an adequate spectral model for the smaller events (Mo &lt; 3 × 1021 dyne-cm) in the data set, whose Brune stress drops range from 5 to 150 bars. For the five events in the data set with Mo ≧ 1023 dyne-cm, however, the source spectra obtained by regressing the residuals suggest that an ω2 spectrum is an inadequate model for the spectral shape. In particular, the corner frequencies for most of these large events appear to be split, so that the spectra exhibit an intermediate behavior (where |ü(ω)| is roughly proportional to ω).


1992 ◽  
Vol 82 (6) ◽  
pp. 2308-2327
Author(s):  
Stephen H. Hartzell

Abstract Aftershocks of the 1989 Loma Prieta, California, earthquake are used to estimate site response along the San Francisco Peninsula. A total of 215 shear-wave records from 24 sources and 21 sites are used in a linear inversion for source and site response spectra. The methodology makes no assumptions about the shape of the source spectrum. However, to obtain a stable, unique inverse a Q model and geometrical spreading factor are assumed, as well as a constraint on site response that sets the site response averaged over two specific stations to 1.0. Site responses calculated by this formulation of the problem are compared with other studies in the same region that use different methodologies and / or data. The shear-wave site responses compare favorably with estimates based on an ω2-constrained source model. Comparison with coda amplification factors is not as close, but still favorable considering that the coda values were determined for nearby locations with similar geology, and not the same sites. The degree of agreement between the three methods is encouraging considering the very different assumptions and data used.


Sign in / Sign up

Export Citation Format

Share Document