Investigation of the water purification efficiency of land treatment system by using microbial community as an index

2011 ◽  
Vol 32 (1-3) ◽  
pp. 153-160 ◽  
Author(s):  
Yu-Kang Yuan ◽  
Chih-Min Huang ◽  
Jung-Han Cheng
2021 ◽  
Vol 25 (1) ◽  
pp. 563-573
Author(s):  
Oskars Svedovs ◽  
Mikelis Dzikevics ◽  
Vladimirs Kirsanovs ◽  
Ivars Veidenbergs

Abstract This work is a continuation of the article “Methods for Determining the Performance and Efficiency Parameters of the Flue-gas Condenser Sedimentation Tank”. During the experimental determination of Particulate Matter (PM) physical parameters, a described methodology was used. The results obtained affected the choice of water purification technology. Sedimentation technology was selected but provided that a filter element should be present in the installation. The article describes the types of industrial sedimentation tanks used more often. In condition that the system should be compact, while at the same time the purification efficiency rate should be high, the new suitable design of the water treatment system was developed.


2021 ◽  
Author(s):  
Qingfeng Chen ◽  
You Feng ◽  
Jinye Li ◽  
Qing Li ◽  
Ting Liu

Abstract An artificial floating island is an ecological restoration technology that aims to create sustainable ecosystems and improve biodiversity. Aquatic plants play an important role in wastewater purification. The floating island system exploits the combination of aquatic plants, microorganisms, and extracellular enzymes to purify wastewater. We investigated the purification efficiency of eight aquatic plant species (Ceratophyllum demersum, Elodea nuttallii, Eichhornia crassipes, lris pseudacorus, lris sibirica, Myriophyllum verticillatum, Thalia dealbata and Oenanthe javanica) cultured in wastewater. The relationships of plant purification capacity with extracellular enzyme activity and microbial community were analyzed to explore the crucial factors that affect the plant purification capacity and the mechanism of pollutants removal in different plant systems. Three plant species, namely Oenanthe javanica, Thalia dealbata, and lris pseudacorus, were the most effective for purification of ammonium-nitrogen (NH4+-N), total phosphate (TP), and chemical oxygen demand (COD) with maximum efficiencies of 76.09%, 85.87%, and 89.10%, respectively. Urease, alkaline phosphatase (AP), and β-glucosidase activities were significantly and positively correlated with root system development (P < 0.05). Activities of urease and AP were positively correlated with NH4+-N and TP removal, respectively. The magnitude of urease and AP activity was generally consistent with the plant’s capacity to remove NH4+-N and TP. β-Glucosidase activity and COD removal were not significantly correlated. The dominant microbial phylum in each species treatment was Proteobacteria. Alphaproteobacteria and Bacteroidia showed > 1% relative abundance and greater involvement in degradation of pollutants in the experimental system. The results provide a scientific and theoretical basis for improvement of the plant purification efficiency of artificial floating island systems.


2016 ◽  
Vol 122 (6) ◽  
pp. 708-715 ◽  
Author(s):  
Hoang T.N. Dao ◽  
Kyohei Kuroda ◽  
Nozomi Nakahara ◽  
Tsuyoshi Danshita ◽  
Masashi Hatamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document