A hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation: Effect of pore size and transmembrane pressure

2017 ◽  
Vol 69 ◽  
pp. 102-108 ◽  
Author(s):  
Lili Song ◽  
Bo Zhu ◽  
Veeriah Jegatheesan ◽  
Stephen Gray ◽  
Mikel Duke ◽  
...  
Author(s):  
Lili Song ◽  
Bo Zhu ◽  
Veeriah Jegatheesan ◽  
Stephen R. Gray ◽  
Mikel C. Duke ◽  
...  

2007 ◽  
Vol 7 (5-6) ◽  
pp. 43-51 ◽  
Author(s):  
Y. Matsui ◽  
T. Aizawa ◽  
M. Suzuki ◽  
Y. Kawase

The musty-earthy taste and odour caused by the presence of geosmin and other compounds in tap water are major causes of consumer complaints. Although ozonation and granular activated carbon (GAC) adsorption have been practiced in water-treatment plants to remove these compounds effectively, two major problems associated with the application of these processes – formation of stringently regulated bromate ions by ozonation and unhygienic invertebrate colonisation of GAC filters – are still to be resolved. This research advanced the process of adsorption by powdered activated carbon (PAC) by reducing its particle size to the submicrometre range for microfiltration pretreatment. Adsorption pretreatment by using this super (S)-PAC removed the geosmin with vastly greater efficiency than by normal PAC. Removal was attained in a much shorter contact time and at a much lower dosage. The S-PAC was also beneficial in attenuating the transmembrane pressure rises that occurred between both physical backwashings and chemical cleanings.


2016 ◽  
Vol 75 (2) ◽  
pp. 439-450 ◽  
Author(s):  
Asmaa Ali ◽  
Abdelkader Ahmed ◽  
Ali Gad

This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb2+, Cu2+, and Cd2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.


2011 ◽  
Vol 65 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Bojana Ikonic ◽  
Zoltan Zavargo ◽  
Aleksandar Jokic ◽  
Zita Seres ◽  
Gyula Vatai ◽  
...  

This work investigates influence of different process parameters such as transmembrane pressure, flow rate and concentration of wheat starch suspension on the average permeate flux and permeate flux decline. Used membrane in all experiments was 19 channels ceramic membrane with 0.2 ?m pore size. Experimental results were analyzed using response surface methodology. It is observed that the significant average permeate flux enhancement of 200% was achieved by the increase of the transmembrane pressure, while the increase of flow rate and concentration affected the increase in average permeate flux in the range of 40-100%. Permeate flux decline was almost independent of the transmembrane pressure, but the increase of the flow rate, as well as the decrease of the concentration led to decrease of permeate flux decline in the range of 20-50%.


2015 ◽  
Vol 73 (3) ◽  
Author(s):  
Zakariah Yusuf ◽  
Norhaliza Abdul Wahab ◽  
Shafishuhaza Sahlan ◽  
Abdul Halim Abdul Raof

Recently, membrane technology has become more attractive particularly in solid-liquid separation process. Membrane bioreactor (MBR) has found to be a reliable technology to replace the conventional activated sludge (CAS) process for water and wastewater treatment by adopting membrane filtration technology and bioreactor. However, numerous drawbacks arise when using membrane which includes high maintenance cost and fouling problem. An optimal MBR plant operation is needed to be determined in order to reduce fouling and at the same time reduce the cost of running the MBR. It is crucial to have a reliable MBR filtration prediction that can measure and predict the filtration dynamic performance especially the effect of fouling to the filtration and cleaning operations. With this prediction tool, suitable action can be taken to improve the operation in order to find the optimum setting of the filtration process. This paper presents the permeate flux measurement and prediction development for submerged membrane filtration process. Three input filtration parameters were used to predict the permeate flux in the filtration process. This work  employed feed forward artificial neural network (FFNN) and radial basis function neural network (RBFNN) for the prediction purpose. The permeate flux prediction method was developed using operation settings such as aeration airflow, suction pump voltage and transmembrane pressure (TMP) under schedule relaxation condition.  The result shows that FFNN method gives better performance compared with RBFNN method in terms of accuracy and reliability. 


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 397
Author(s):  
Magdalena Zielińska ◽  
Katarzyna Bernat ◽  
Wioleta Mikucka

Although the membrane bioreactor technology is gaining increasing interest because of high efficiency of wastewater treatment and reuse, data on the anaerobic transformations of retentate are scarce and divergent. The effects of transmembrane pressure (TMP) in microfiltration (MF) and ultrafiltration (UF) on the pollutant rejection, susceptibility of ceramic membrane to fouling, hydraulic parameters of membrane module, and biogas productivity of retentate were determined. Irrespective of the membrane cut-off and TMP (0.2–0.4 MPa), 97.4 ± 0.7% of COD (chemical oxygen demand), 89.0 ± 4.1% of total nitrogen, and 61.4 ± 0.5% of total phosphorus were removed from municipal wastewater and the permeates can be reused for irrigation. Despite smaller pore diameter, UF membrane was more hydraulically efficient. MF membrane had 1.4–4.6 times higher filtration resistances than UF membrane. In MF and UF, an increase in TMP resulted in an increase in permeate flux. Despite complete retention of suspended solids, strong shearing forces in the membrane installation changed the kinetics of biogas production from retentate in comparison to the kinetics obtained when excess sludge from a secondary clarifier was anaerobically processed. MF retentates had 1.15 to 1.28 times lower cumulative biogas production than the excess sludge. Processing of MF and UF retentates resulted in about 60% elongation of period in which 90% of the cumulative biogas production was achieved.


Author(s):  
Zakariah Yusof ◽  
Norhaliza Abdul Wahab ◽  
Syahira Ibrahim ◽  
Shafishuhaza Sahlan ◽  
Mashitah Che Razali

<span lang="EN-US">The modeling of membrane filtration processes is a challenging task because it involves many interactions from both biological and physical operational behavior. Membrane fouling behaviour in filtration processes is complex and hard to understand, and to derive a robust model is almost not possible. Therefore, it is the aim of this paper to study the potential of time series neural network based dynamic model for a submerged membrane filtration process. The developed model that represent the dynamic behavior of filtration process is later used in control design of the membrane filtration processes. In order to obtain the dynamic behaviour of permeate flux and transmembrane pressure (TMP), a random step was applied to the suction pump. A recurrent neural network (RNN) structure was employed to perform as the dynamic models of a filtration process, based on nonlinear auto-regressive with exogenous input (NARX) model structure. These models are compared with the linear auto-regressive with exogenous input (ARX) model. The performance of the models were evaluated in terms of %<em>R<sup>2</sup></em>, mean square error (MSE,) and a mean absolute deviation (MAD). For filtration control performance, a proportional integral derivative (PID) controller was implemented. The results showed that the RNN-NARX structure able to model the dynamic behavior of the filtration process under normal conditions in short range of the filtration process. The developed model can also be a reliable assistant for two different control strategies development in filtration processes.</span>


RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 24961-24969 ◽  
Author(s):  
Hassan Younas ◽  
Jiahui Shao ◽  
Yiliang He ◽  
Gul Fatima ◽  
Syed Taseer Abbas Jaffar ◽  
...  

Membrane fouling is a serious concern that significantly affects the membrane filtration process.


Sign in / Sign up

Export Citation Format

Share Document