Removal of tetracycline antibiotic from aqueous environments using core-shell silica magnetic nanoparticles

2017 ◽  
Vol 87 ◽  
pp. 348-357 ◽  
Author(s):  
Nafiseh Farhadian ◽  
◽  
Mohammad Sadegh Rezaeian ◽  
Sona Aseyednezhad ◽  
Farideh Haffar ◽  
...  
2020 ◽  
Vol 4 (3) ◽  
Author(s):  
C. Kons ◽  
Manh-Huong Phan ◽  
Hariharan Srikanth ◽  
D. A. Arena ◽  
Zohreh Nemati ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chin-Wei Lin ◽  
Jian-Ming Chen ◽  
You-Jun Lin ◽  
Ling-Wei Chao ◽  
Sin-Yi Wei ◽  
...  

Abstract Recently, gold-coated magnetic nanoparticles have drawn the interest of researchers due to their unique magneto-plasmonic characteristics. Previous research has found that the magneto-optical Faraday effect of gold-coated magnetic nanoparticles can be effectively enhanced because of the surface plasmon resonance of the gold shell. Furthermore, gold-coated magnetic nanoparticles are ideal for biomedical applications because of their high stability and biocompatibility. In this work, we synthesized Fe3O4@Au core-shell nanoparticles and coated streptavidin (STA) on the surface. Streptavidin is a protein which can selectively bind to biotin with a strong affinity. STA is widely used in biotechnology research including enzyme-linked immunosorbent assay (ELISA), time-resolved immunofluorescence (TRFIA), biosensors, and targeted pharmaceuticals. The Faraday magneto-optical characteristics of the biofunctionalized Fe3O4@Au nanoparticles were measured and studied. We showed that the streptavidin-coated Fe3O4@Au nanoparticles still possessed the enhanced magneto-optical Faraday effect. As a result, the possibility of using biofunctionalized Fe3O4@Au nanoparticles for magneto-optical biomedical assays should be explored.


2014 ◽  
Vol 50 (11) ◽  
pp. 1-4 ◽  
Author(s):  
Galina V. Kurlyandskaya ◽  
Inaki Madinabeitia ◽  
A. M. Murzakaev ◽  
M. Belen Sanchez-Ilarduya ◽  
V. Beketov ◽  
...  

2003 ◽  
Vol 36 (4) ◽  
pp. 1069-1074 ◽  
Author(s):  
D. Eberbeck ◽  
A. Lange ◽  
M. Hentschel

Different very dilute suspensions of magnetic nanoparticles (magnetite surrounded by an organic shell) in water (ferrofluids) were investigated using small-angle X-ray scattering. It is shown that the scattering originates not only from noncorrelated core–shell nanoparticles, but also from larger structures. By modelling, these structures can be identified as close-packed clusters consisting of core–shell particles (core diameter ∼10 nm). The analysis of the radial distance distribution function, obtained by Fourier transformation of the scattered intensity, reveals a lower bound of the mean cluster size of about 40 nm. The formation of clusters is persistent, even in very dilute suspensions.


2019 ◽  
Vol 208 ◽  
pp. 816-826 ◽  
Author(s):  
Siow Hwa Teo ◽  
Aminul Islam ◽  
Eng Seng Chan ◽  
S.Y. Thomas Choong ◽  
Nabeel H. Alharthi ◽  
...  

2015 ◽  
Vol 92 (6) ◽  
Author(s):  
V. Dimitriadis ◽  
D. Kechrakos ◽  
O. Chubykalo-Fesenko ◽  
V. Tsiantos

2017 ◽  
Vol 10 (05) ◽  
pp. 1750056 ◽  
Author(s):  
Huiping Shao ◽  
Jiangcong Qi ◽  
Tao Lin ◽  
Yuling Zhou ◽  
Fucheng Yu

The core–shell structure composite magnetic nanoparticles (NPs), Fe3O4@chitosan@nimodipine (Fe3O4@CS@NMDP), were successfully synthesized by a chemical cross-linking method in this paper. NMDP is widely used for cardiovascular and cerebrovascular disease prevention and treatment, while CS is of biocompatibility. The composite particles were characterized by an X-ray diffractometer (XRD), a Fourier transform infrared spectroscopy (FT-IR), a transmission electron microscopy (TEM), a vibrating sample magnetometers (VSM) and a high performance liquid chromatography (HPLC). The results show that the size of the core–shell structure composite particles is ranging from 12[Formula: see text]nm to 20[Formula: see text]nm and the coating thickness of NMDP is about 2[Formula: see text]nm. The saturation magnetization of core–shell composite NPs is 46.7[Formula: see text]emu/g, which indicates a good potential application for treating cancer by magnetic target delivery. The release percentage of the NMDP can reach 57.6% in a short time of 20[Formula: see text]min in the PBS, and to 100% in a time of 60[Formula: see text]min, which indicates the availability of Fe3O4@CS@NMDP composite NPs for targeting delivery treatment.


2018 ◽  
Vol 2 (1) ◽  
pp. 01-04
Author(s):  
Mansour Binandeh

Initially, magnetic nanoparticles (MNP) Fe3O4 are synthesized by a chemical correlation method and its core / shell structure is detected using SEM, FT-IR analysis. The purpose of this production was to use the nanoparticle performance level in the absorption of antibiotics, namely, ampicillin (amp). Absorption sampling was analyzed by UV-Vis spectrophotometer and the results indicate that the absorbance of the ampere increases to 85%. The bond between these two is electrostatic bonding, which was confirmed by EDX analysis. Ultimately, this compound was used for the antibacterial process. In this case, the MNP-amp compound was added in a natural amount of 20 μl a bacterial culture pattern overnight (In-vitro). The results showed that 95% of the bacteria were killed (confirmation of antibacterial properties of MNP). Therefore, it can be transmitted intentionally by controlling the magnetic field into living cells for the destruction of pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document