Key methods of drinking water pollution caused by heavy metals

2018 ◽  
Vol 125 ◽  
pp. 198-202
Author(s):  
Yuan Fu ◽  
Xin Liu ◽  
Guanyi Chen
Author(s):  

The paper presents the results of the determination of heavy metals in drinking water samples from centralized water supply systems and wells of individual water supply of the Sverdlovsk region. It was found that the content of copper ions in the samples does not exceed its maximum permissible concentration, and the content of lead and cadmium ions in most samples is higher than the permissible norms. It is established that water samples from Nizhny Tagil and Serov are more contaminated with cadmium. The causes of drinking water pollution are discussed. It was found that the pollution of water from the centralized water supply systems with heavy metals is mainly due to the non-compliance of the operated water pipes with sanitary and hygienic requirements. Groundwater pollution is caused by the infiltration of industrial effluents containing heavy metals from storage and sedimentation tanks through soil. It is shown that numerous industrial enterprises in the Sverdlovsk region aggravate the process of pollution of surface and groundwater with heavy metals. The unsatisfactory quality of water in terms of the content of heavy metals in Sverdlovsk region is revealed. The authors dwell on the need to continue research to determine the content of other heavy metals in water and expand the geography of sampling in the region in order to assess more accurately the quality of water.


2016 ◽  
Author(s):  
M. S. M. EL-Bady

Abstract. In this paper, the heavy metals of the surface drinking water of Damietta governorate were evaluated. Damietta district, Farascore City, EL-Zarka City and Kafr Saad City are the main locations of drinking water pollution. The villages of the Damietta governorate have concentration values less than the permissible limits of World Health Organization (WHO) and Egyptian Ministry Health (EMH).


Author(s):  
A Xavier Susairaj

A large number of chemicals are used in the tanneries to convert the rawhide into finished leather. The chemicals used by the tanneries are ends in wastewater. This wastewater is dumped into nearby rivers and canals that create water pollution heavy metals in the water. The aim of this process is to access the chemicals used in the tannery industry post tanning process and to evaluate the drinking water quality of the wastewater released by the tanneries in the Palar river basin in Vellore district Tamil Nadu. To analyze the perception of the people in the study area affected by health due to wastewater from the tanneries. This study was performed as a cases study of the current drinking water sources used by households and how they perceive the quality of water. The second objective is to analyze the relationship between water quality and health hazards among households in the Vellore district. Primary data was collected from the respondents with the help of a questionnaire, total sample size of the respondent was 500, multistage random sampling technique was used to collect the data with the help of questioner method, the descriptive and statistical tools were used to analyse the data with SPSS and R statistical packages. The result shows that the people in the river basing suggested controlling the wastewater for the tanneries, and they demanded compensation from the tanneries. Finally, to suggest policy measures to control the water pollution in the study area.


Author(s):  
Nadira Ibrišimović Mehmedinović ◽  
Aldina Kesić ◽  
Almir Šestan ◽  
Aida Crnkić ◽  
Mirza Ibrišimović

Humans are generally exposed to a variety of pollutions present in the air they breathe, the food they eat or in the water they drink. Some of the most dangerous pollutions are metals and heavy metals. These are naturally occurring substances which are harmless when present in the environment at low levels. However, due to many pollutants such as industry processes or war activities, the heavy metal concentration can exceed the limit of tolerance and become very toxic for the natural environment and living organisms in it, including humans. Unlike organic pollutants, the heavy metals (as ions and as particulate matter) once introduced into the environment cannot be biodegraded and remain there indefinitely. By rainfall these pollutants can be partially transferred from air or soil into the rivers and drinking water sources, where they accumulate in even higher toxic levels. The high concentrations of heavy metals in contaminated natural water reservoirs have an impact on the microbial community composition which resides there. This type of water pollution can cause the changes in life cycles of natural bacterial populations, influencing their metabolic processes and proliferation. The presence of pathogens in water is normally indirectly determined by the testing for “indicator organism” such as coliform bacteria. Coliforms are usually present in larger numbers in contaminated water and at the same time they are indicators of whether other pathogenic bacteria are present, too. In crisis situations, like war or some natural disasters, where trusted sources of drinking water are not available anymore, the military and residents of affected areas are forced to use some alternative water resources that cannot be tested for their microbial or metal contamination properly. Therefore, the existence of some fast test that would detect not only dangerous bacterial pathogens in water, but also the presence of metals and heavy metals as well, would be of great help and importance for the human health. Even though the number of pathogens can be drastically reduced by the boiling of water, the heavy metals are not destroyed by high temperature. Hence the main objective of our work was to optimize the biosensor chip for microbial detection in contaminated water that would serve at the same time as an indicator for the chemical composition of the water, such as presence of metals and heavy metals, with potential to be used as a novel test tool in public health.


1999 ◽  
Vol 39 (2) ◽  
pp. 201-208 ◽  
Author(s):  
C. Dierkes ◽  
W. F. Geiger

Runoff from highways contains significant loads of heavy metals and hydrocarbons. According to German regulations, it should be infiltrated over embankments to support groundwater-recharge. To investigate the decontaminating effect of greened embankments, soil-monoliths from highways with high traffic densities were taken. Soils were analyzed to characterize the contamination in relation to distance and depth for lead, zinc, copper, cadmium, PAH and MOTH. Lysimeters were charged in the field and laboratory with highway runoff to study the effluents under defined conditions. Concentrations of pollutants in roadside soils depend on the age of embankments and traffic density. Highest concentrations were found in the upper 5 cm of the soil and within a distance of up to two metres from the street. Concentrations of most pollutants decreased rapidly with depth and distance. Lead and cadmium could not be detected in lysimeter effluent. Zinc and copper were found in concentrations that did not exceed drinking water quality limits.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 860
Author(s):  
Konstantinos Simeonidis ◽  
Manassis Mitrakas

Elevated concentrations of heavy metals in drinking water resources and industrial or urban wastewater pose a serious threat to human health and the equilibrium of ecosystems [...]


2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Elmontaser M. Seleem ◽  
Alaa Mostafa ◽  
Mohammed Mokhtar ◽  
Salman A. Salman

Sign in / Sign up

Export Citation Format

Share Document