scholarly journals Echographic Evidence of Follicle Development and Maturation

Author(s):  
Veljko Vlaisavljevic

ABSTRACT Monitoring of individual follicles during the menstrual cycle demonstrates in a non-invasive way the changes in their number and position during the early and the late follicular phase and the luteal phase. The differences in relations between the follicles near the dominant follicle can be demonstrated with the same technique using 3D reconstruction of the ovary. Recognition of the follicle growth pattern has a prognostic value for the outcome of assisted reproduction methods. Follicular diameter and changes in growth patterns are more important than follicular wall thickness as parameters having an impact on clinical success. An increased perifollicular blood flow can be measured in the perifollicular period using color and pulsed Doppler. Automated estimation of blood volume around the ovarian follicles brought a new concept to this area. Results confirm the observation that vascularity around the follicle is intense in the periovulatory period. From our results we can hypothesize that those follicles containing oocytes able to produce pregnancy have a prominent and more uniform perifollicular vascular network .

Author(s):  
V Vlaisavljevic ◽  
M Došen

Abstract Monitoring of individual follicles during the menstrual cycle demonstrates in a noninvasive way the changes in their number and position during the early and the late follicular phase and the luteal phase. The differences in relations between the follicles near the dominant follicle can be demonstrated with the same technique using 3D reconstruction of the ovary. An increased perifollicular blood flow can be measured in the perifollicular period using color and pulsed Doppler. Automated estimation of blood volume around the ovarian follicles brought a new concept to this area. Results confirm the observation that vascularity around the follicle is intense in the periovulatory period. The blood volume does not differ between follicles containing an oocyte and those with no oocyte in the aspirate, or a nonfertilizable oocyte. From our results we can hypothesize that those follicles containing oocytes able to produce pregnancy have a more uniform perifollicular vascular network . Recognition of the follicle growth pattern has a prognostic value for the outcome of assisted reproduction methods. Follicular diameter and changes in growth patterns are more important than follicular wall thickness as parameters having an impact on clinical success.


2001 ◽  
Vol 16 (5) ◽  
pp. 846-854 ◽  
Author(s):  
F.P. Hohmann ◽  
J.S.E. Laven ◽  
F.H. de Jong ◽  
M.J.C. Eijkemans ◽  
B.C.J.M. Fauser

2021 ◽  
Vol 3 ◽  
Author(s):  
Dan Martin ◽  
Kate Timmins ◽  
Charlotte Cowie ◽  
Jon Alty ◽  
Ritan Mehta ◽  
...  

Objectives: This study aimed to assess how menstrual cycle phase and extended menstrual cycle length influence the incidence of injuries in international footballers.Methods: Over a 4-year period, injuries from England international footballers at training camps or matches were recorded, alongside self-reported information on menstrual cycle characteristics at the point of injury. Injuries in eumenorrheic players were categorized into early follicular, late follicular, or luteal phase. Frequencies were also compared between injuries recorded during the typical cycle and those that occurred after the cycle would be expected to have finished. Injury incidence rates (per 1,000 person days) and injury incidence rate ratios were calculated for each phase for all injuries and injuries stratified by type.Results: One hundred fifty-six injuries from 113 players were eligible for analysis. Injury incidence rates per 1,000 person-days were 31.9 in the follicular, 46.8 in the late follicular, and 35.4 in the luteal phase, resulting in injury incidence rate ratios of 1.47 (Late follicular:Follicular), 1.11 (Luteal:Follicular), and 0.76 (Luteal:Late follicular). Injury incident rate ratios showed that muscle and tendon injury rates were 88% greater in the late follicular phase compared to the follicular phase, with muscle rupture/tear/strain/cramps and tendon injuries/ruptures occurring over twice as often during the late follicular phase compared to other phases 20% of injuries were reported as occurring when athletes were “overdue” menses.Conclusion: Muscle and tendon injuries occurred almost twice as often in the late follicular phase compared to the early follicular or luteal phase. Injury risk may be elevated in typically eumenorrheic women in the days after their next menstruation was expected to start.


1982 ◽  
Vol 243 (5) ◽  
pp. E387-E397 ◽  
Author(s):  
A. L. Goodman ◽  
G. D. Hodgen

To learn how progesterone (P) inhibits follicle growth during the luteal phase, we determined whether P will inhibit follicle growth when follicle-stimulating hormone (FSH) is secreted in large amounts, namely, after luteectomy (CLX) in monkeys with only one ovary. Second, a functional role for 17 alpha-hydroxyprogesterone (17OHP) was examined as a common mediator of the inhibition of folliculogenesis by the dominant follicle and corpus luteum. To accomplish the first goal, nine chronically hemiovarectomized monkeys were lutectomized chronically hemiovariectomized monkeys were luteectomized at midluteal phase. In five monkeys that received no steroid, the next preovulatory luteinizing hormone (LH) surge occurred 14.0 +/- 0.8 days (mean +/- SE) after CLX. In contrast, the next LH surge was delayed in four monkeys implanted for 10 days with Silastic capsules containing P and occurred 25.0 +/- 2.7 days after CLX, i.e., 14.8 +/- 2.7 days after the capsule removal. In both groups, FSH levels increased markedly after CLX to a comparable degree and duration; yet, only a single follicle ovulated in each monkey. To examine a potential inhibitory role for 17OHP, monkeys with two ovaries were luteectomized and received 1) no steroid, 2) 17OHP via Silastic capsules, or 3) P for 10 days after CLX. Progesterone replacement after CLX appeared to maintain 17OHP levels, which showed a transient decrease after CLX alone. As above, P delayed the next LH surge (25.4 +/- 1.3 vs. 15.0 +/- 0.6 days) despite comparable increases in serum FSH after CLX alone. Replacement at two levels of 17OHP did not delay the onset of menses (2-3 days post-CLX) or significantly delay the next LH surge 18.3 +/!- 1.9 or 20.8 +/- 3.4 vs. 15.0 +/- 0.6 days (P greater than 0.2) in monkeys CLX only. Whatever may be the mode of action of P, it appears that it is not mediated by peripheral conversion to 17OHP. These findings demonstrate that P at luteal phase levels can inhibit follicle growth culminating in ovulation even in the face of sustained, elevated levels of endogenous FSH. Because single ovulations occurred despite unambiguous and prolonged increments in serum FSH after CLX, the precise regulation of the ovulatory quota in this primate appears to be accomplished by means other than FSH alone.


1998 ◽  
Vol 156 (1) ◽  
pp. 91-98 ◽  
Author(s):  
L Riboni ◽  
C Escamilla ◽  
R Chavira ◽  
R Dominguez

The effects of peripheral sympathetic denervation induced by guanethidine administration to newborn and 10-day-old female guinea pigs on puberty, ovulation and the follicular population were analysed. Peripheral sympathetic denervation beginning at birth resulted in the loss of ovarian norepinephrine content (0.95. +/- 0.1 ng/mg wet tissue in untreated control animals vs non detectable in treated animals). Guanethidine administration to newborn or 10-day-old guinea pigs advanced puberty (age of vaginal opening: 27 +/- 1.2 days (newborn), 26 +/- 1.7 (10-day-old) vs 37 +/- 0.7 (control), P < 0.001) and ovulation. The number of corpora lutea in control and denervated animals was similar (3.5 +/- 0.2 vs 3.3 +/- 0.3). The relative weight (mg/100 g body weight) of the ovaries and adrenals in the denervated animals autopsied during the late follicular phase (24-48 h after vaginal opening) increased (ovaries: 27.8 +/- 1.3, 28.9 +/- 3.0 vs 20.9 +/- 0.8, P < 0.05; adrenals 36.4 +/- 1.4, 37.0 +/- 0.8 vs 31.6 +/- 1.5, P < 0.05), while the uterine weight diminished (179 +/- 13, 149 +/- 28 vs 292 +/- 20). When the animals were killed during the late luteal phase (9-11 days after vaginal closure), the relative weight of the ovaries of newborn guanethidine-treated animals was higher than that of the control animals (21.4 +/- 1.7 vs 16.8 +/- 1.4, P < 0.05). The mean number of follicles counted in the ovaries of denervated animals was significantly higher than in control animals (1736 +/- 230 vs 969 +/- 147, P < 0.05). The mean diameter of the follicles in the untouched control ovary in animals killed in the late follicular phase was significantly larger than from animals killed in the late luteal phase (263 +/- 3.9 microns vs 248 +/- 3.0 microns, P < 0.01). The mean diameter of the follicles measured in the ovaries of denervated animals was significantly higher than in controls (animals treated from birth 274 +/- 2.0 microns vs 255 +/- 2.4, P < 0.05; animals treated from day 10, 286 +/- 2.3 microns vs 257 +/- 2.3, P < 0.05). When the mean diameter of the follicles in the left and right ovary of the untouched control was analysed, the follicular diameter in the left ovary was significantly larger than in the right ovary (309 +/- 6.0 microns vs 214 +/- 3.9, P < 0.01); the response of the left and right ovaries to sympathetic denervation was the opposite. The results obtained in the present study suggest that ovarian innervation plays a role in the regulation of follicular growth, maturation and atresia which is not related to changes in steroid secretion by the ovary, but to other regulatory mechanisms.


1996 ◽  
Vol 149 (2) ◽  
pp. 233-242 ◽  
Author(s):  
P D Carrière ◽  
D Harvey ◽  
G M Cooke

Abstract During the luteal phase in the cow, a first-wave dominant follicle grows to reach ovulatory size, but then ceases to grow, becomes no longer dominant and enters a phase of slow regression. During this growth transition, the concentration of oestradiol has been shown to decrease in follicular fluid. The objective of this study was to determine if follicular fluid oestradiol concentrations are regulated by the activity of three major steroidogenic enzymes, namely P450-aromatase (P450-arom), 3β-hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase (3β-HSD) and 17α-hydroxylase C-17,20 lyase cytochrome P450 enzyme (P450–17α) measured in granulosa and theca cells isolated from individual first-wave dominant follicles. Follicle growth and state of dominance was assessed by ultrasonography and follicles were classified as growing-dominant (GD, n=6), non-growing-dominant (NGD, n=8) or non-growing-non-dominant (NGND, n=6). Mean follicular fluid concentrations of oestradiol were higher in GD than in NGD or NGND follicles (511 ± 98 versus 136 ± 16 and 20 ± 11 nmol/l respectively). Oestradiol was not correlated with P450-arom in any of the three groups. In GD follicles, oestradiol was positively correlated with pregnenolone concentration but neither was correlated with granulosa or theca 3β-HSD activity or with theca P450–17α activity. In NGD follicles, oestradiol was negatively correlated with theca 3β-HSD activity and pregnenolone was negatively correlated with granulosa 3β-HSD activity. In NGND follicles, oestradiol was positively correlated, and pregnenolone was negatively correlated with theca 3β-HSD and P450–17α activities. These studies demonstrated that pregnenolone supply is the principal regulating factor of oestradiol output during follicle dominance and during the loss of dominance but that the levels of P450–17α and 3β-HSD activity become rate-limiting when the follicle is no longer dominant. Journal of Endocrinology (1996) 149, 233–242


1975 ◽  
Vol 79 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Elwyn M. Grimes ◽  
Irwin E. Thompson ◽  
Melvin L. Taymor

ABSTRACT Thirty-one ovulatory women between 20 and 33 years of age were given 150 μg of synthetic LH-RH during different phases of the menstrual cycle. Five patients were studied during the early follicular phase (days 4–7); 10 patients during the late follicular phase (days 9–12); 6 patients during the "LH Surge"; 5 patients during the early luteal phase (days 14–16); 3 patients during mid-luteal phase (days 17–21); and 2 patients during late luteal phase (days 22–27). Oestrogen, progesterone, FSH and LH levels were determined from 30 min prior to LH-RH administration to 90 min thereafter in all cases. LH response to LH-RH increased progressively during the follicular phase. Enhanced pituitary responsiveness to LH-RH occurred at mid-cycle for both LH and FSH and maximum LH responses occurred during the "LH Surge" and early luteal phase. LH responses during the mid and late luteal phases were similar to late follicular phase responses. There were no significant differences between FSH responses during the early follicular, late follicular, mid-luteal and late luteal phases. Maximum pituitary responsiveness appears to occur in a gonadal steroid milieu of high oestrogen levels in association with rising but low progesterone levels. Progesterone or a crucial oestrogen: progesterone ratio may in fact potentiate pituitary release of LH during the early stages of corpus luteum formation. Pituitary responsiveness to LH-RH correlates positively with basal LH and oestrogen levels during the menstrual cycle and with the oestrogen:progesterone ratio during the luteal phase.


Sign in / Sign up

Export Citation Format

Share Document