Electrochemical Measurements of Time-of-Wetness and Atmospheric Corrosion Rates

CORROSION ◽  
1977 ◽  
Vol 33 (1) ◽  
pp. 13-16 ◽  
Author(s):  
F. MANSFELD ◽  
J. V. KENKEL
Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 196
Author(s):  
Juan J. Santana ◽  
Víctor Cano ◽  
Helena C. Vasconcelos ◽  
Ricardo M. Souto

The effects of both test-panel orientation and exposure angle on the atmospheric corrosion rates of carbon steel probes exposed to a marine atmosphere were investigated. Test samples were exposed in a tree-shape metallic frame with either three exposure angles of 30°, 45° and 60° and orientation north-northeast (N-NE), or eight different orientation angles around a circumference. It was found that the experimental corrosion rates of carbon steel decreased for the specimens exposed with greater exposure angles, whereas the highest corrosion rates were found for those oriented to N-NE due to the influence of the prevailing winds. The obtained data obtained were fitted using the bi-logarithmic law and its variations as to take in account the amounts of pollutants and the time of wetness (TOW) for each particular case with somewhat good agreement, although these models failed when all the effects were considered simultaneously. In this work, we propose a new mathematical model including qualitative variables to account for the effects of both exposure and orientation angles while producing the highest quality fits. The goodness of the fit was used to determine the performance of the mathematical models.


2015 ◽  
Vol 7 (2) ◽  
pp. 181-191
Author(s):  
Javier Rodríguez Yáñez ◽  
Luis Garita Arce ◽  
Ericka Saborío Leiva

The Corrosion maps used are to display quickly the different situations in a country. These maps developed are for low alloy steel in Costa Rica depending on climatic data and pollutant levels, considering the different regulations associated with ISO 9223 and models developed by the Center for Research in Corrosion (CICorr). The atmosphere in Costa Rica has high rates of Brooks, considered very corrosive. The corrosion controlling atmospheric parameters are the relative humidity (RH) and Wetting Time (TWH) associated with low levels of pollution and rural type atmospheres. The corrosion rates are between 25 and 80μm*yr-1 (Class 3 and 4 according to ISO 9223). Local models associated with the controlling parameters are more suitable for estimating the corrosion according to ISO 9223.


2009 ◽  
pp. 309-309-30 ◽  
Author(s):  
F Mansfeld ◽  
S Tsai ◽  
S Jeanjaquet ◽  
E Meyer ◽  
K Fertig ◽  
...  

2020 ◽  
Vol 832 ◽  
pp. 137-146
Author(s):  
Monika Kubzová ◽  
Vit Křivý ◽  
Viktor Urban ◽  
Katerina Kreislova

This article deals with the topic of atmospheric corrosion. Atmospheric corrosion causes damage to nearly 80% of all existing steel structures. The main parameters of atmospheric corrosion are the time of wetness (TOW), air temperature and aggressive corrosive agents such as chlorides, sulfur dioxide and others. Currently, low alloy steels with improved atmospheric corrosion resistance called weathering steels are used for the steel structures located in outdoor environment. A protective layer of corrosion products is created on the steel surface and this layer can reduce continuation of corrosion of steel. The time of wetness together with the effect of aggressive corrosive agents are various for surfaces oriented vertically or horizontally. Experimental tests of atmospheric weathering steel were carried out to monitor the impact of location and position of surface on the different constructions. These tests allow monitoring the development of corrosion products in real exposures. The article presents a part of the research, which includes monitoring the development of the thickness of corrosion products with regard to the position on the structure. Research is developed to refine of prediction models with the aim of improving determination of corrosion losses during the service life of the structure. Second part of these experiments is dedicated to measuring the deposition rate of chlorides. Chlorides have a corrosive impact on the steel surface. Under normal conditions the chlorides does not create suitable environment for the development of a protective layer of corrosion products.


2015 ◽  
Vol 62 (4) ◽  
pp. 246-252 ◽  
Author(s):  
Baboo Y. R. Surnam

Purpose – This paper aims to investigate the corrosion behaviour of carbon steel in the Mauritian atmosphere over a three-year period. Atmospheric corrosion is a serious problem in Mauritius. Design/methodology/approach – Carbon steel samples were exposed outdoors at various sites. Mass loss analysis was performed to determine the corrosion behaviour of the metal over the exposure period. Scanning electron microscopy and Raman tests were performed to investigate the formation of the corrosion products on the carbon steel surface. Findings – It was found that the corrosion loss at two of the sites considered did not vary clearly according to the bilogarithmic law. Time of wetness was found to be a main factor affecting atmospheric corrosion in Mauritius. The corrosivity of the atmosphere was found to lie between categories C3 and C4, according to ISO 9223. Originality/value – The results can be of essential help to the construction industry, especially as steel buildings are becoming very common in Mauritius. Moreover, as Mauritius is a tropical island, the results obtained can be useful in other tropical islands.


2008 ◽  
Vol 38 ◽  
pp. 163-181 ◽  
Author(s):  
Sean Morefield ◽  
Susan Drozdz ◽  
Vincent F. Hock ◽  
William Abbott

A large scale atmospheric corrosion monitoring test was undertaken for the purpose of characterizing environmental severity. This work was conducted at ground based Army, Navy, Coast Guard, and Air Force sites. At present over 73 sites are in operation. This work adds to the existing worldwide databases to include new military and/or related sites not previously monitored. In addition and to the extent that such data are available, relevant weather data was collected from public or military sources in order to test existing corrosion algorithms for each site. Many of the 1 year exposures have been successfully completed. However, all of the exposures currently in progress will not be completed until early 2008. Sample analyses are in progress. New data have been obtained to show the important effects of sheltering on reducing corrosion rates. Data from Daytona Beach and Tyndall AFB show that even a relatively simple open structure/sunshade can reduce corrosion rates by factors of 2 or 3. New data are being reported on corrosion vs. distance from ocean. Data were also collected for the comparison of corrosion severity among commonly used test sites and within selected sites (multiple locations within a base.)


Sign in / Sign up

Export Citation Format

Share Document