Effect of Water Cut on the Localized Corrosion Behavior of P110 Tube Steel in Supercritical CO2/Oil/Water Environment

CORROSION ◽  
10.5006/1926 ◽  
2016 ◽  
Vol 72 (11) ◽  
pp. 1470-1482 ◽  
Author(s):  
Jianbo Sun ◽  
Chong Sun ◽  
Guoan Zhang ◽  
Weimin Zhao ◽  
Yong Wang
2019 ◽  
Vol 66 (5) ◽  
pp. 671-682
Author(s):  
Yuanpeng Cheng ◽  
Yu Bai ◽  
Shanfa Tang ◽  
Dukui Zheng ◽  
Zili Li ◽  
...  

Purpose The purpose of this paper is to investigate the corrosion behavior of X65 steel in the CO2-saturated oil/water environment using mass loss method, potentiodynamic polarization technique and characterization of the corroded surface techniques. Design/methodology/approach The weight loss analysis, electrochemical study and surface investigation were carried out on X65 steel that had been immersed in the CO2/oil/water corrosive medium to understand the corrosion behavior of gathering and transportation pipeline steel. The weight loss tests were carried out in a 3 L autoclave, and effects of water cut and temperature on the CO2 corrosion rate of X65 steel were studied. Electrochemical studies were carried out in a three-electrode electrochemical cell with the test temperature was 60°C, and the CO2 partial pressure was 1 atm by recording open circuit potential/time and potentiodynamic polarization characteristics. The surface and cross-sectional morphologies of corrosion product scales were characterized using scanning electron microscopy. The phases of corrosion product scales were investigated using x-ray diffraction. Findings The results showed that due to the wetting and adsorption of crude oil, the corrosion morphology of X65 steel changed under different water cuts. When the water cut of crude oil was 40-50 per cent, uniform corrosion occurred on the steel surface, accompanied by local pitting. While the water cut was 70-80 per cent, the resulting corrosion product scales were thick, loose and partial shedding caused platform corrosion. When the water cut was 90 per cent, the damaged area of platform corrosion was enlarged. Crude oil can hinder the corrosion scales from being dissolved by the corrosive medium, and change dimension and accumulation pattern of the crystal grain, thickness and structure of the corrosion scales. Under the corrosion inhibition effect of crude oil, the temperature sensitive point of X65 steel corrosion process moved to low temperature, appeared at about 50°C, lower corrosion rate interval was broadened and the corrosion resistance of X65 steel was enhanced. Originality/value The results can be helpful in selecting the applicable corrosion inhibitors and targeted anti-corrosion measures for CO2-saturated oil/water corrosive environment.


2018 ◽  
Vol 11 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Lin Xu ◽  
Jie Xu ◽  
Ming-biao Xu ◽  
Si-yang Li ◽  
Shuai Liu ◽  
...  

Introduction: The production casing of 3% Cr steel has encountered severe internal corrosion in Huizhou Oilfield. To disclose corrosion behavior of inner casing, a series of corrosion exposure tests were systematically conducted on 3% Cr coupons in terms of in-field conditions. Material and Methods: Influence of exposure time, temperature, and water-cut on the CO2 corrosion of 3% Cr steel was investigated, and analyses on weight loss, composition and morphology of corrosion product, and Tafel polarization curves were further carried out. Result: The results showed that the corrosion rate of 3% Cr steel increased with increasing temperature, but such trend descended when the temperature exceeded 65°C due to formation of an compact and adherent corrosion product film on the surface of 3% Cr coupons. While varying exposure time from 7 days to 14 days, the corrosion rate decreased, and the Cr and O enrichment was determined in the corrosion products. The corrosion rate of 3% Cr steel increased with a continuous increment of water-cuts, especially when the water-cut was larger than 40%. Conclusion: The localized corrosion can happen at the lower water-cut due to the presence of amorphous films. The main corrosion products were FeCO3, Cr5O12, Fe2O3, and Fe-Cr. Entry of CO2 to the simulated formation water caused an increase in the anodic Tafel slope, and accelerated dissolution of 3% Cr steel.


2021 ◽  
Vol 387 ◽  
pp. 138543
Author(s):  
Sabarison Pandiyarajan ◽  
Zhao Chen Liu ◽  
Ai-Ho Liao ◽  
Muthusankar Ganesan ◽  
Sheng-Tung Huang ◽  
...  

2013 ◽  
Vol 83 (5) ◽  
pp. 864-869 ◽  
Author(s):  
Elisa J. Kassab ◽  
José Ponciano Gomes

ABSTRACT Objective: To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. Materials and Methods: NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Results: Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. Conclusions: There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.


2021 ◽  
Author(s):  
Chuan Yu ◽  
Qinghai Yang ◽  
Songbo Wei ◽  
Ming Li ◽  
Tao Fu

Abstract Single-layer water cut measurement is of great significance for identifying and shutting off the unwanted water, analyzing oil remained and optimizing production. Currently, however, only the water cut of multilayer mixture can be measured by testing samples taken from wellhead, a way which is widely used in oilfields. That of single-layer fluid cannot be determined yet To address the problem, this paper puts forward a new impedance sensor that offers long-term online monitoring of single-layer water cut. This sensor is based on the different electrical conductivity of oil and water. It has two layers. The inner one contains three electrodes - two at both sides sending sinusoidal excitation signals and one at the middle receiving signals that have been attenuated by the water-oil medium. With the Maxwell's model of oil-water mixed fluid, the receiver then can measure the water cut online. The outer layer of the sensor is made of PEEK, an insulative protection. In front of the electrodes lies a static mixer which makes the measurement more accurate by fully blending the two media when they flow through the electrodes. Laboratory tests are carried out with the prototype of the sensor at various oil-water mixing ratios, fluid flow rates, and temperatures. Results show that the average margin of error is within ± 3%. Higher accuracy is seen when high water cut and flow rate enable oil globules to disperse more evenly and the space in between to get wider and the RMS error is less than 2%. If the water cut drops below 80%, the aggregation of the droplets will cause wild fluctuation and more errors in the measurement. In addition, the mineralization of the mixture directly changes its conductivity, which largely impacts the result. Meanwhile, temperature can influence the ionic movement intensity and then alter the conductivity of the medium. Therefore, in practice, the sensor calibration needs to be performed according to the range of medium salinity, and the temperature of the medium is collected in real time for temperature compensation. It is shown that after the adjustment, the water cut measurement results have higher accuracy and consistency. The impedance sensor can realize online water cut monitoring for a single-layer, indicated by tests. It is more suitable for the increasing high water cut oilfields in that it is more accurate as the water cut grows.


Sign in / Sign up

Export Citation Format

Share Document