scholarly journals The influence of chloride ion concentration on the localized corrosion of E717 Mg alloy

CORROSION ◽  
10.5006/3601 ◽  
2020 ◽  
Author(s):  
Christos Kousis ◽  
Neil McMurray ◽  
Patrick Keil ◽  
Geraint Williams

The localized corrosion behavior of E717 magnesium alloy immersed in chloride-containing electrolyte is investigated using an in-situ scanning vibrating electrode technique (SVET), coupled with time-lapse imaging (TLI). It is shown that initiation of localized corrosion in chloride-containing electrolyte is characterized by the appearance of discrete local anodes, corresponding with the leading edges of dark, filiform like features, which combine with time to produce a mobile anodic front. The size and growth rate of these features are highly dependent on the chloride ion concentration of the electrolyte. SVET-derived current density maps reveal that the corroded surface left behind the anodic front is cathodically activated, where cathodic current density values progressively decline with increasing distance away from the anodic leading edge. The intensity of localized anodes is highly dependent on the chloride ion concentration, where progressively higher local anodic current density values are observed with increasing chloride ion concentration along with progressively higher rates of volumetrically-determined hydrogen evolution. Breakdown potential, measured using time-dependent free corrosion potential transients and potentiodynamic polarization at neutral and elevated pH respectively, is shown to vary with the logarithm of chloride ion concentration and the time for localized corrosion initiation is progressively increased with decreasing chloride concentration. From the combination of results which are presented herein, the underlying reasons for the influence of chloride ion concentration on the localized corrosion characteristics of E717 alloy will be discussed.

2015 ◽  
Vol 180 ◽  
pp. 313-330 ◽  
Author(s):  
Geraint Williams ◽  
Nick Birbilis ◽  
H. Neil McMurray

The early stages of localised corrosion affecting magnesium (Mg) surfaces when immersed in aqueous sodium chloride (NaCl) solutions involves the propagation of dark regions, within which both anodic metal dissolution and cathodic hydrogen evolution occur. For nominally “pure” Mg, these dark areas can either take the form of discs which expand radially with time, or filiform-like tracks which lengthen with time. For Mg surfaces which display disc-form corrosion features in concentrated NaCl electrolyte, a transition to filiform corrosion (FFC) is observed as the concentration is decreased, indicating ohmic constraints on radial propagation. A similar effect is observed when Mg specimens of different iron impurity are immersed in a fixed, high concentration NaCl solution, where disc-form corrosion is observed on samples having ≥280 ppm Fe, but FFC predominates at ≤80 ppm Fe. An in situ scanning vibrating electrode technique (SVET) is used to determine current density distributions within the propagating corrosion features. Cathodic current density values of between −100 and −150 A m−2 measured in central areas of disc-like features are sufficient to sustain the radial growth of a local anode at the perimeter of the discs. However, for high purity Mg specimens (≤80 ppm Fe), cathodic current densities of −10 A m−2 or less are measured over FFC affected regions, indicating that linear propagation arises when there is insufficient cathodic current produced on the corroded surface to sustain radial growth. The results are consistent with surface control of localised corrosion propagation in concentrated electrolyte, but ohmic control in dilute, lower conductivity NaCl solution.


2014 ◽  
Vol 86 (2) ◽  
pp. 259-262 ◽  
Author(s):  
Rolando Guidelli ◽  
Richard G. Compton ◽  
Juan M. Feliu ◽  
Eliezer Gileadi ◽  
Jacek Lipkowski ◽  
...  

Abstract The transfer coefficient α is a quantity that is commonly employed in the kinetic investigation of electrode processes. An unambiguous definition of the transfer coefficient, independent of any mechanistic consideration and exclusively based on experimental data, is proposed. The cathodic transfer coefficient αc is defined as –(RT/F)(dln|jc|/dE), where jc is the cathodic current density corrected for any changes in the reactant concentration on the electrode surface with respect to its bulk value, E is the applied electric potential, and R, T, and F have their usual significance. The anodic transfer coefficient αa is defined similarly, by simply replacing jc with the anodic current density and the minus sign with the plus sign. This recommendation aims at clarifying and improving the definition of the transfer coefficient reported in the 3rd edition of the IUPAC Green Book.


2000 ◽  
Vol 65 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Bisenija Petrovic ◽  
Tanja Kostic

The electrodeposition of chromium in programmed reversing current (RC), was investigated in the regime of high cathodic current density (77 A dm -2) and anodic current density (55 Adm -2). The ratio of the cathodic and anodic time (60 : 1) was used. Chromium was deposed on a steel substrate from a chromic-sulphuric acid solution, during one hour. Anode and cathode were suited in a system of parallel plates. Basic properties of deposits, like thickness, morphology, microhardness, brightness were examined. Surface distribution of the deposits was obtained from the measurements of the thicknesses of the deposits (between 32 and 67 mm).A ferromagnetic non-destructive method was used in the measurements. Based on the results, graphic models of deposit surface distribution were made. Two ranges of the thickness could be seen on the model (range 1 - average thickness 35.1 mm and range 2 - average thickness 57.81 mm). These results were statisticaly analysed by colums, rows and by the whole surface. For the whole specimens, the average thickness was 45.39 mm with a coefficient of variation of 0.2582. The basic properties of the deposits did not change with a variation of the thickness. Because of this, the coatings deposited with the reversing current could be much more considered reliable in wear and corrosion protection systems than ones deposited by direct current.


2013 ◽  
Vol 295-298 ◽  
pp. 1327-1332 ◽  
Author(s):  
Chun Rong Wang ◽  
Sha Chang ◽  
Min Ye ◽  
Qin Yi Ren

The electrochemical treatment of ammonia using born-doped diamond (BDD) as advanced treatment of coking wastewater was investigated. The effects of chloride ion concentration and current density on current efficiency and energy consumption were also analyzed. The results show that the current efficiency increases with chloride ion concentration increase and current density decrease. And 30% of current efficiency is obtained when current density is less than 19.7mA cm-2, and it decreases above 19.7mA cm-2. The energy consumption decreases with the chloride ion concentration increase and current density decrease. And energy consumption of 0.50kWh g-1 and ammonia removal rate of 84.7% can be achieved at initial ammonia concentration of 100mg L-1, chloride concentration of 900mg L-1 and current density of 29.6mA cm-2.Therefore, BDD electrodes have high current efficiency and low energy consumption, which attributed to its high oxygen evolution overvoltage (2.6V vs. SCE) and low chloride evolution overvoltage (1.5V vs. SCE).


2010 ◽  
Vol 37-38 ◽  
pp. 398-401 ◽  
Author(s):  
Bing Suo Pan ◽  
Xiao Hong Fang ◽  
Yong Chang Tian

For machining of hard and brittle materials, iron electrodeposit is a kind of matrix material with potential advantages for manufacture of diamond tools. Aiming at the problem of difficult codeposition of diamond in iron deposit, this paper adopts orthogonal design of experiment to study the effects of solution pH value, cathodic current density, alkylphenol polyoxyethylene (10) ether (OP-10) concentration and ammonium chloride concentration on codeposition of diamond, and then Fe-based diamond bits were fabricated and drilling tests in granite were carried out. The results show that pH value, cathodic current density, OP-10 concentration and ammonium chloride concentration all have statistically significant effect on codeposition of diamond in iron deposit, whose contributions to the variance of the weight of codeposited diamond are 37.45%, 32.05%, 13.13% and 12.38%, respectively. The result of drilling test indicates that Fe-based diamond bit can achieve much higher penetration rate than common Ni-based diamond bit.


CORROSION ◽  
2012 ◽  
Vol 68 (4) ◽  
pp. 045003-1-045003-10 ◽  
Author(s):  
M. Akhoondan ◽  
A.A. Sagüés

The extent of the oxygen reduction reaction in concrete was evaluated for ~9% Cr rebar approaching the ASTM A1035 specification and compared to that of conventional carbon steel rebar, at ages of up to ~1 year. Cathodic strength was measured by the cathodic current density developed at −0.35 V vs. copper/copper sulfate (Cu/CuSO4 [CSE]) and −0.40 VCSE in cyclic cathodic potentiodynamic polarization tests, both in the as-received condition with mill scale and with scale removed by glass bead surface blasting. In both conditions the ~9% Cr alloy was a substantially weaker cathode, by a factor of several fold, than carbon steel. Within each material, the surface-blasted condition yielded also much lower cathodic current density than the as-received condition. For a small anode-large cathode system with a given anode polarization function, and no important oxygen reduction concentration polarization, the corrosion current was projected to be significantly lower if the cathodic region were ~9% Cr instead of plain steel rebar with comparable surface condition. There was strong correlation between the charge storage capability of the interface and the extent of cathodic reaction of oxygen. The result cannot be ascribed solely to differences in effective surface area between the different materials and conditions.


CORROSION ◽  
10.5006/3574 ◽  
2020 ◽  
Author(s):  
Ronald Clark ◽  
James Humpage ◽  
Robert Burrows ◽  
Hugh Godfrey ◽  
Mustufa Sagir ◽  
...  

Magnesium (Mg) non-oxidizing alloy, known as Magnox, was historically used as a fuel cladding material for the first-generation of carbon dioxide (CO<sub>2</sub>) gas-cooled nuclear reactors in the UK. Waste Magnox is currently stored in cooling ponds, pending final disposal. The corrosion resistance of Mg and its alloys is relatively poor, compared to modern cladding materials such as zirconium (Zr) alloys, so it is important to have a knowledge of the chloride concentration/pH dependence on breakdown and localized corrosion characteristics prior to waste retrievals taking place. Our results show that Magnox exhibits passivity in high pH solutions, with charge transfer resistance and passive film thicknesses showing an increase with immersion time. When chloride is added to the system the higher pH maintains Magnox passivity, as shown through a combination of potentiodynamic and time-lapse/post corrosion imaging experiments. Potentiodynamic polarization of Magnox reveals a -229 mV<sup>-decade</sup> linear dependence of breakdown potential with chloride ion concentration. The use of the scanning vibrating electrode technique (SVET) enabled the localized corrosion characteristics to be followed. At high pH where Magnox is passive, at low chloride concentrations, the anodes which form predominantly couple to the visually intact surface in the vicinity of the anode. The high pH however means that visually intact Magnox in the vicinity of the anode is less prone to breakdown, restricting anode propagation such that they remain largely static. In high chloride concentrations the higher conductivity means that the anode and cathode can couple over greater distances and so propagation along the surface can occur at a much faster rate, with the visually intact surface acting as a distributed cathode. In addition, the chloride anion itself, when present at high concentration will play a role in rapid passive film dissolution, enabling rapid anode propagation.


CORROSION ◽  
10.5006/2695 ◽  
2017 ◽  
Vol 74 (5) ◽  
pp. 577-587 ◽  
Author(s):  
Yuichi Fukaya ◽  
Toshifumi Hirasaki ◽  
Katsuhiko Kumagai ◽  
Teruhisa Tatsuoka ◽  
Kenro Takamori ◽  
...  

This synopsis describes corrosion issues and mitigation activities shortly after the Fukushima Daiichi Nuclear Power Station accident. An earthquake of magnitude 9.0 occurred on March 11, 2011; the subsequent tsunami removed the cooling capacity of fuels in both the reactors and spent fuel pools (SFPs). Seawater was temporarily used for emergency fuel cooling, which induced various corrosion issues. Just after the accident, the temperatures within the reactors of Units 1 to 3 increased to several hundred degrees Celsius and the water quality of the cooling water seems to have become similar to that of concentrated seawater. To stabilize the fuel cooling, corrosion mitigation actions were required for mainly carbon steel components. The following corrosion mitigation measures were applied to the reactors: (a) temperature decreases, (b) dissolved oxygen removal from feedwater via deaeration, (c) dissolved oxygen removal from cooling water in the reactors via nitrogen gas injection, (d) salt removal from cooling water, and (e) sterilization of feedwater by hydrazine addition. The temperatures of SFP water in Units 1 to 4 were between 47°C and 93°C just after the accident. The maximum chloride ion concentration was approximately 2,000 ppm and the pH was in the range from 7.5 to 11.2. The mitigation of localized corrosion of the stainless steel pool liners and alkaline corrosion of the aluminum fuel racks was the top priority. In addition to (a), (b), and (d) listed above, (f) dissolved oxygen removal and sterilization by hydrazine addition and (g) pH control were applied to the SFPs. In the six years since the accident, no major corrosion problems have yet arisen. However, continued efforts to increase plant stability are underway for the long-term goal of decommissioning.


2006 ◽  
Vol 15-17 ◽  
pp. 816-821 ◽  
Author(s):  
Geert Mertens ◽  
Lode Duprez ◽  
Bruno C. De Cooman ◽  
Marc Verhaege

The presence of hydrogen in steel decreases its toughness and formability leading to hydrogen embrittlement. To understand the failure mechanisms of steel due to the presence of hydrogen, a profound insight in the hydrogen household of the steel is needed. This includes a study of the solubility, the diffusion and the trapping of hydrogen. Next, the absorption and desorption behavior during and after electrolytic charging must be well determined. This was investigated in this research for steels with various types of traps, e.g. dislocations, microcracks, grain boundaries and precipitates such as TiC and Ti4C2S2. The samples were cathodically charged at three different current densities: 0.8mA/cm2; 8.3mA/cm2 and 62.5mA/cm2. It was noticed that the cathodic current density used for hydrogen loading had a great influence on the results. Observation of the samples by scanning electron microscopy (SEM) showed that at the highest current density major damage of the surface had occurred. Hence it was decided to study more systematically the influence of charging current density on the resulting surface aspect and on hydrogen absorption and desorption. The hydrogen charging kinetics, maximum hydrogen solubility and hydrogen desorption behavior have also been evaluated for the different current densities during charging.


2018 ◽  
Vol 764 ◽  
pp. 95-105
Author(s):  
Zhong Wen Sima ◽  
Zhi Yong Li ◽  
Hong Bin Cui ◽  
Hun Guo

Prepared the nanoZrO2 reinforced Cu-matrix composite by pulse electroforming. The effects of the content of nanoZrO2 particle in the casting solution, average cathodic current density, duty cycle, pulse frequency and ultrasonic power on the content of nanoZrO2 in the electroforming Cu-matrix composite have been studied. The microhardness and surface morphology of Cu-ZrO2 composite were analyzed. The experimental results demonstrate that the maximum content of nanoZrO2 in the electroforming Cu-ZrO2 composite is 2.94%, microhardness is 492 HV, which is significantly improved compared with pulse pure copper’s 337 HV, when the content of nanoZrO2 is 40 g/L, average cathodic current density is 4A/dm2, duty cycle is 0.2 , pulse frequency is 1100 Hz and ultrasonic power is 20w .The surface of composite prepared by pulse electroforming is more smooth, organization is denser, grain is finer and agglomeration of nanoZrO2 particles is fewer compared with Direct-current electroforming nanoZrO2 reinforced Cu-ZrO2 composite.


Sign in / Sign up

Export Citation Format

Share Document