scholarly journals Ridge Subduction and Origin of Sanbagawa-Ryoke Metamorphic Rocks and Associated Granitic Rocks: Link to Regional Dynamics and Material Cycling

2008 ◽  
Vol 117 (1) ◽  
pp. 292-298
Author(s):  
Hikaru IWAMORI
EKSPLORIUM ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 33
Author(s):  
Ngadenin Ngadenin ◽  
Frederikus Dian Indrastomo ◽  
Widodo Widodo ◽  
Kurnia Setiawan Widana

ABSTRAKElla Ilir secara administratif terletak di Kabupaten Melawi, Kalimantan Barat. Geologi regional daerah Ella Ilir tersusun atas batuan malihan berumur Trias–Karbon yang diterobos oleh batuan granitik berumur Yura dan Kapur. Keterdapatan mineral radioaktif di daerah tersebut terindikasi dari radioaktivitas urat-urat magnetit pada batuan malihan berumur Trias–Karbon dengan kisaran nilai 1.000 c/s hingga 15.000 c/s. Tujuan dari penelitian ini adalah menentukan jenis cebakan mineral bijih dan mengidentifikasi keterdapatan mineral radioaktif pada urat-urat bijih magnetit di daerah Ella Ilir. Metode yang digunakan adalah pemetaan geologi, pengukuran radioaktivitas, analisis kadar uranium, dan analisis mineragrafi beberapa sampel urat bijih magnetit. Litologi daerah penelitian tersusun oleh kuarsit biotit, metatuf, metabatulanau, metapelit, granit biotit, dan riolit. Sesar sinistral barat-timur dan sesar dekstral utara-selatan merupakan struktur sesar yang berkembang di daerah ini. Komposisi mineral urat-urat magnetit terdiri dari mineral-mineral bijih besi, sulfida, dan radioaktif. Mineral bijih besi terdiri dari magnetit, hematit, dan gutit. Mineral sulfida terdiri dari pirit, pirhotit, dan molibdenit sedangkan mineral radioaktif terdiri dari uraninit dan gumit. Keterdapatan urat-urat bijih magnetit dikontrol oleh litologi dan struktur geologi. Urat-urat magnetit pada metabatulanau berukuran tebal (1,5–5 m), mengisi rekahan-rekahan yang terdapat di sekitar zona sesar. Sementara itu, urat-urat magnetit pada metapelit berukuran tipis (milimetrik–sentimetrik), mengisi rekahan-rekahan yang sejajar dengan bidang sekistositas. Cebakan mineral bijih di daerah penelitian adalah cebakan bijih besi atau cebakan bijih magnetit berbentuk urat karena proses hidrotermal magmatik.ABSTRACTElla Ilir administratively located in Melawi Regency, West Kalimantan. Regional geology of Ella Ilir area is composed of metamorphic rocks in Triassic–Carboniferous age which are intruded by Jurassic and Cretaceous granitic rocks. Radioactive minerals occurences in the area are indicated by magnetite veins radioactivities on Triassic to Carboniferous metamorphic rocks whose values range from 1,000 c/s to 15,000 c/s. Goal of the study is to determine the type of ore mineral deposits and to identify the presence of radioactive mineral in magnetite veins in Ella Ilir area. The methods used are geological mapping, radioactivity measurements, analysis on uranium grades, and mineragraphy analysis of severe magnetite veins samples. Lithologies of the study area are composed by biotite quartzite, metatuff, metasilt, metapellite, biotite granite, and ryolite. The east-west sinistral fault and the north-south dextral fault are the developed fault structures in this area. Mineral composition of magnetite veins are consists of iron ore, sulfide, and radioactive minerals. Iron ore mineral consists of magnetite, hematit, and goetite. Sulfide minerals consist of pyrite, pirhotite, and molybdenite, while radioactive minerals consist of uraninite and gummite. The occurences of magnetite veins are controlled by lithology and geological structures. The magnetite veins in metasilt are thick (1.5–5 m), filled the fractures in the fault zone. Meanwhile, the magnetite veins in metapellite are thinner (milimetric–centimetric), filled the fractures that are parallel to the schistocity. The ore deposits in the study area are iron ore deposits or magnetite ore deposits formed by magmatic hydrothermal processes. 


1970 ◽  
Vol 7 (6) ◽  
pp. 1383-1401 ◽  
Author(s):  
K. Shibata ◽  
T. Nozawa ◽  
R. K. Wanless

Rb–Sr whole-rock and mineral isochron ages have been determined for metamorphic and granitic rocks of the Hida metamorphic belt. The results indicate that an extensive metamorphic event together with plutonic activity took place within the belt during the latest Paleozoic – early Mesozoic period. The older ages of 220–250 m.y. represent an earlier phase of the metamorphism, whereas the younger ages of 170–180 m.y. represent a later phase. The Funatsu granitic rocks yielded a whole-rock isochron age of 176 m.y. with an initial 87Sr/86Sr ratio of 0.7056. This age is believed to indicate the time of original emplacement, and the rocks are considered to represent late-kinematic intrusion in the Hida belt.Some information on the middle Paleozoic metamorphism in the Hida Mountains was obtained from the isochron study. The whole-rock isochron age of 412 m.y. for the metamorphic rocks of the Fujibashi area may be considered, although not confirmed, to indicate the time of older metamorphism. The Omi Schist of the Circum–Hida crystalline schist belt, which belongs to the glaucophanitic type of metamorphism, gave a mineral isochron age of 350 m.y. thereby providing evidence of mid-Paleozoic metamorphism.The initial 87Sr/88Sr ratios for the whole-rock samples of the Hida metamorphic belt are found to be generally low, i.e. 0.705–0.708. This is especially so for the metamorphic rocks from the northern part of the belt where the lowest values were found.


Author(s):  
Toshiaki Shimura ◽  
Masaaki Owada ◽  
Yasuhito Osanai ◽  
Masayuki Komatsu ◽  
Hiroo Kagami

ABSTRACTThe high-dT/dP-type Hidaka Metamorphic Belt in Hokkaido, northern Japan, represents a tilted crustal section of a magmatic arc of Tertiary age. The highest metamorphic grades reached are granulite facies, and the syn-metamorphic granitic rocks are widely distributed in this metamorphic terrane. The granitic rocks are mainly tonalitic and granodioritic in composition, and are classified into peraluminous (S-type) and metaluminous (I-type) granitoids. A large amount of pyroxene-bearing S-type tonalites (garnet-orthopyroxene tonalite) is distributed in the Niikappu river region in the northern part of the Hidaka Metamorphic Belt. Pyroxene-bearing I-type tonalite (two-pyroxene hornblende tonalite) bodies are also distributed in this area.The pyroxene-bearing tonalites are classified into several sub-types on the basis of their field occurrence, texture, mineral assemblage and geochemical features. Homogeneous IH- and SH-type tonalite are thought to represent original magmas, i.e. those which have been generated by partial melting of mafic metamorphic rocks and pelitic-psammitic metamorphic rocks, respectively. Model calculations assuming batch partial melting indicate that possible restites are garnet-two-pyroxene mafic granulite for IH-type and garnet-orthopyroxene aluminous granulite for SH-type. The unexposed lowermost crust of the ‘Hidaka crust’ is thought to be composed of garnet-two-pyroxene mafic granulite, garnet-orthopyroxene aluminous granulite and metagabbros.


2020 ◽  
Vol 50 ◽  
pp. 23-44
Author(s):  
Boldbaatar Dolzodmaa ◽  
Yasuhito Osanai ◽  
Nobuhiko Nakano ◽  
Tatsuro Adachi

The Central Asian Orogenic Belt had been formed by amalgamation of voluminous subduction–accretionary complexes during the Late Neoproterozoic to the Mesozoic period. Mongolia is situated in the center of this belt. This study presents new zircon U–Pb geochronological, whole-rock major and trace element data for granitoids within central Mongolia and discusses the tectonic setting and evolution of these granitic magmas during their formation and emplacement. The zircon U–Pb ages indicate that the magmatism can be divided into three stages: the 564–532 Ma Baidrag granitoids, the 269–248 and 238–237 Ma Khangai granitoids. The 564–532 Ma Baidrag granitoids are adakitic, have an I-type affinity, and were emplaced into metamorphic rocks. In comparison, the 269–248 Ma granitoids have high-K, calc-alkaline, granodioritic compositions and are I-type granites, whereas the associated the 238–237 Ma granites have an A-type affinity. The 564–532 Ma Baidrag and 269–248 Ma Khangai granitoids also both have volcanic arc-type affinities, whereas the 238–237 Ma granites formed in a post-collisional tectonic setting. These geochronological and geochemical results suggest that arc magmatism occurred at the 564–532 Ma which might be the oldest magmatic activity in central Mongolia. Between the Baidrag and the Khangai, there might be paleo-ocean and the oceanic plate subducted beneath the Khangai and produced voluminous granite bodies during the 269–248 Ma. After the closure of the paleo-ocean, the post collisional granitoids were formed at the 238–237 Ma based on the result of later granitoids in the Khangai area.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 445
Author(s):  
Dorota Chmielowska ◽  
Dorota Salata

This study is focused on the loess-like deposits accumulated on glaciofluvial fans of the Czarny Dunajec River in the Orava Basin (Southern Poland). The deposition of these sediments took place during three cold intervals of the Pleistocene: Würm, Riss, and Günz/Mindel. So far, the provenance and age of the deposits has not been precisely defined, even though the development of each fan is believed to be related to the successive glacial periods in the Tatra Mountains. Heavy minerals were studied to determine the source of the deposits. Heavy mineral analyses revealed that zircon, tourmaline, rutile, garnet, amphibole, epidote, and apatite are the typical constituents of the heavy mineral fraction. Abundances of heavy minerals differ in each of the Pleistocene fans of the Czarny Dunajec River, especially the amphibole content. However, the chemical composition of garnet, amphibole, and tourmaline is rather uniform. This research showed that mainly medium-grade metamorphic rocks with a subordinate share of high-grade metamorphics, and granitic rocks are the dominant source rocks of the deposits studied. Such rocks are exposed in the Western Tatra Mountains, which most probably supplied the Orava Basin with clastic material. Change in abundances of heavy minerals in the succession may reflect the progressive erosion of the source area. Grain-size distribution and textural features of the sampled sediments suggest fluvial and aeolian modes of transportation. Additionally, this study indicated that heavy minerals may be used to correlate the loess covers in the Orava Basin.


2011 ◽  
Vol 62 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Vahid Ahadnejad ◽  
Ann Hirt ◽  
Mohammad-Vali Valizadeh ◽  
Saeed Bokani

The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+(mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.


1995 ◽  
Vol 101 (8) ◽  
pp. 615-620 ◽  
Author(s):  
Takashi Nakajima ◽  
Katsuhisa Nagakawa ◽  
Masaaki Obata ◽  
Shigeru Uchiumi

Author(s):  
Carmen Rodríguez ◽  
Manuel Francisco Pereira ◽  
Antonio Castro ◽  
Gabriel Gutiérrez-Alonso ◽  
Carlos Fernández

Bulk rock geochemistry and sensitive high-resolution ion microprobe zircon geochronology of igneous and metaigneous rocks of the Évora gneiss dome, located to the north of the reworked Rheic Ocean suture zone in the southwest Iberian Variscan belt, reveal a succession of magmatic and melting events lasting ∼30 m.y. between ca. 341−314 Ma. The study of detailed field relationships of orthomigmatites (i.e., migmatites from igneous protoliths) and host granitic rocks proved to be crucial to reconstruct the complex sequence of tectono-thermal events of the Évora gneiss dome. The older igneous protoliths, with marked geochemical arc-like signatures, are represented by 338 ± 3 Ma tonalites and 336 ± 3 Ma diorites. These tonalites and diorites appear as mesosomes of igneous orthomigmatites containing new melts (leucosomes) of monzogranite composition and silica-poor trondhjemites formed in a melting episode at 329 ± 4/6 to 327 ± 3 Ma. The absence of peritectic phases (e.g., pyroxene), together with shearing associated with migmatization, imply the existence of water-rich fluids during melting of the older igneous rocks of the Évora gneiss dome. This melting event is coeval with the second magmatic event of the Évora gneiss dome represented by the neighboring Pavia pluton. A porphyritic monzogranite dated at 314 ± 4 Ma defines a later magmatic event. The porphyritic monzogranite encloses large blocks of the orthomigmatites and contains magmatic mafic enclaves (autoliths) dated at 337 ± 4 Ma that are ∼23 m.y. older than the host rock. All studied rocks of the Évora gneiss dome show arc-like, calc-alkaline geochemical signatures. Our results support recycling of intermediate-mafic plutonic rocks, representing the root of an early magmatic arc that formed at the time of Gondwana-Laurussia convergence (after the closure of the Rheic Ocean) and coeval subduction of the Paleotethys. A geodynamic model involving ridge subduction is proposed to explain the Early Carboniferous intra-orogenic crustal extension, dome formation, exhumation of high-grade rocks, compositional variations of magmatism and formation of new granitic magmatism in which, arc-like signatures were inherited from the crustal source.


Sign in / Sign up

Export Citation Format

Share Document