scholarly journals A Weighted Evidence Combination Method Based on the Pignistic Probability Distance and Deng Entropy

Author(s):  
Lifan Sun ◽  
Yuting Chang ◽  
Jiexin Pu ◽  
Haofang Yu ◽  
Zhe Yang

The Dempster-Shafer (D-S) theory is widely applied in various fields involved with multi-sensor information fusion for radar target tracking, which offers a useful tool for decision-making. However, the application of D-S evidence theory has some limitations when evidences are conflicting. This paper proposed a new method combining the Pignistic probability distance and the Deng entropy to address the problem. First, the Pignistic probability distance is applied to measure the conflict degree of evidences. Then, the uncertain information is measured by introducing the Deng entropy. Finally, the evidence correction factor is calculated for modifying the bodies of evidence, and the Dempster’s combination rule is adopted for evidence fusion. Simulation experiments illustrate the effectiveness of the proposed method dealing with conflicting evidences.

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1222
Author(s):  
Fanghui Huang ◽  
Yu Zhang ◽  
Ziqing Wang ◽  
Xinyang Deng

Dempster–Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to process real-time and online conflicting evidence. In order to solve the above problems, a novel information fusion method is proposed in this paper. The proposed method combines the uncertainty of evidence and reinforcement learning (RL). Specifically, we consider two uncertainty degrees: the uncertainty of the original basic probability assignment (BPA) and the uncertainty of its negation. Then, Deng entropy is used to measure the uncertainty of BPAs. Two uncertainty degrees are considered as the condition of measuring information quality. Then, the adaptive conflict processing is performed by RL and the combination two uncertainty degrees. The next step is to compute Dempster’s combination rule (DCR) to achieve multi-sensor information fusion. Finally, a decision scheme based on correlation coefficient is used to make the decision. The proposed method not only realizes adaptive conflict evidence management, but also improves the accuracy of multi-sensor information fusion and reduces information loss. Numerical examples verify the effectiveness of the proposed method.


2009 ◽  
Vol 16-19 ◽  
pp. 1310-1317
Author(s):  
Wei Zhou ◽  
Ying Ji Liu ◽  
Qing Fu Cao ◽  
Tian Xia Zhang

In order to enhance the accuracy of engine fault diagnosis, information fusion technology was applied and a novel combination method is proposed based on D-S evidence theory. The evidence groups were classified by evidence conflict coefficient, the importance of each highly conflict evidence was calculated, and the credibility of each evidence was determined with a distance function of evidence bodies. Then the weight value of each evidence was revised with its importance and credibility respectively. Finally, the Dempster combination rule was used to realize the information fusion. The effectiveness of the new approach proposed was verified by theoretical analysis and experiment research results. Comparing with D-S evidence theory and the improved synthesis formula, the new combination method is more efficient in improving the accuracy and the certainty degree of engine fault diagnosis.


Author(s):  
Sofiia Alpert

Dempster-Shafer evidence theory is the most effective approach to process imprecise and incomplete information. But Dempster’s combination rule can not deal with conflicting data and can lead to illogical results. That’s why the combination of conflicting bodies of evidence is one of the most difficult problems. Yager’s solution approach can process conflicting data, but correlation among evidences is not taken into account. It was proposed a new combination method, that uses correlation among different bodies of evidence and give accurate results.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 526
Author(s):  
Jian Wang ◽  
Jing-wei Zhu ◽  
Yafei Song

Existing methods employed for combining temporal and spatial evidence derived from multiple sources into a single coherent description of objects and their environments lack versatility in various applications such as multi-sensor target recognition. This is addressed in the present study by proposing an adaptive evidence fusion method based on the power pignistic probability distance. This method classifies evidence sets into non-conflicting and conflicting evidence sets based on the maximum power pignistic probability distance obtained between evidence pairs in the evidence set. Non-conflicting evidence sets are fused using Dempster’s rule, while conflicting evidence sets are fused using a weighted average combination method based on the power pignistic probability distance. The superior evidence fusion performance of the proposed method is demonstrated by comparisons with the performances of seven other fusion methods based on numerical examples with four different evidence conflict scenarios. The results show that the method proposed in this paper not only can properly fuse different types of evidence, but also provides an excellent focus on the components of evidence sets with high confidence, which is conducive to timely and accurate decisions.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 495 ◽  
Author(s):  
Ying Zhou ◽  
Yongchuan Tang ◽  
Xiaozhe Zhao

Uncertain information exists in each procedure of an air combat situation assessment. To address this issue, this paper proposes an improved method to address the uncertain information fusion of air combat situation assessment in the Dempster–Shafer evidence theory (DST) framework. A better fusion result regarding the prediction of military intention can be helpful for decision-making in an air combat situation. To obtain a more accurate fusion result of situation assessment, an improved belief entropy (IBE) is applied to preprocess the uncertainty of situation assessment information. Data fusion of assessment information after preprocessing will be based on the classical Dempster’s rule of combination. The illustrative example result validates the rationality and the effectiveness of the proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2137
Author(s):  
Dingyi Gan ◽  
Bin Yang ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely applied in the field of information fusion. However, when the collected evidence data are highly conflicting, the Dempster combination rule (DCR) fails to produce intuitive results most of the time. In order to solve this problem, the base belief function is proposed to modify the basic probability assignment (BPA) in the exhaustive frame of discernment (FOD). However, in the non-exhaustive FOD, the mass function value of the empty set is nonzero, which makes the base belief function no longer applicable. In this paper, considering the influence of the size of the FOD and the mass function value of the empty set, a new belief function named the extended base belief function (EBBF) is proposed. This method can modify the BPA in the non-exhaustive FOD and obtain intuitive fusion results by taking into account the characteristics of the non-exhaustive FOD. In addition, the EBBF can degenerate into the base belief function in the exhaustive FOD. At the same time, by calculating the belief entropy of the modified BPA, we find that the value of belief entropy is higher than before. Belief entropy is used to measure the uncertainty of information, which can show the conflict more intuitively. The increase of the value of entropy belief is the consequence of conflict. This paper also designs an improved conflict data management method based on the EBBF to verify the rationality and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document