scholarly journals Cover plants as a suppression and increasing tool to hairy fleabane control

Author(s):  
A. Guareschi ◽  
J. Cechin ◽  
M.A. Bianchi ◽  
N.D. Kruse ◽  
F. Piccinini ◽  
...  
Keyword(s):  
Weed Science ◽  
1989 ◽  
Vol 37 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Kevin C. Vaughn ◽  
Martin A. Vaughan ◽  
Patrick Camilleri

Cross-resistance of the paraquat-resistant (R) hairy fleabane to other compounds that accept electrons from photosystem I (PSI) or produce toxic oxygen species was determined by chlorophyll loss, electron microscopy, and chlorophyll fluorescence suppression. Although the R bioype is approximately 100 x more resistant to paraquat than the susceptible (S) biotype based upon the assays for tissue damage, little or no cross-resistance was observed to a number of other PSI electron acceptors, including the bipyridilium herbicide morfamquat. A low level of resistance (approximately 10-fold) was noted to diquat and the singlet oxygen generator rose bengal. As measured by chlorophyll fluorescence suppression, the R biotype was about 100-fold resistant to paraquat, but only 10-fold resistant to diquat, and exhibited no resistance to morfamquat. Because differences observed with this protocol are direct measures of the ability of the herbicide to reach the active site and the results correlate with the level of resistance observed by chlorophyll bleaching or electron microscopy, these data suggest that compartmentalization is the major factor in paraquat resistance in hairy fleabane.


2017 ◽  
Vol 47 (3) ◽  
pp. 336-344 ◽  
Author(s):  
Giliardi Dalazen ◽  
Maurício Bigolin ◽  
Ivair Valmorbida ◽  
Regis Felipe Stacke ◽  
Deise Cagliari

ABSTRACT In addition to competing with crops, weeds can provide shelter for arthropods in cropping fields and adjacent areas. This study aimed to investigate the occurrence and population fluctuation of insect pests and their natural enemies associated with hairy fleabane (Conyza spp.), in soybean farming areas. The predominant species were Schizaphis graminum, Taylorilygus apicalis, Empoasca spp. and Nysius simulans. Species that comprise important pest complexes, including stink bugs and caterpillars, can develop on fleabane plants. Among them, the stink bugs Edessa meditabunda, Dichelops spp., Piezodorus guildinii, Nezara viridula and Euschistus heros, as well as the caterpillars Anticarsia gemmatalis, Spodoptera frugiperda, Spodoptera eridania, Chrysodeixis includens and Helicoverpa spp. have prevailed. The most common natural enemies were Orius spp., Eriopis connexa, Cycloneda sanuiinea and Chrysoperla spp. The population fluctuation analysis indicated that hairy fleabane mainly hosted stink bugs at the beginning of the crop cycle and after soybean maturation. The caterpillars, however, use this weed as an alternative host throughout the crop cycle, continuing after soybean maturation and harvesting. For natural enemies species, the population fluctuation depends on the occurrence of insects that serve as a food source for them. Thus, it is possible to conclude that hairy fleabane is an important alternative host for pest insects and their natural enemies in soybean crops.


2012 ◽  
Vol 30 (2) ◽  
pp. 401-406 ◽  
Author(s):  
D.J. Soares ◽  
W.S. Oliveira ◽  
R.F. López-Ovejero ◽  
P.J Christoffoleti

Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Miki Okada ◽  
Marie Jasieniuk

Inheritance of glyphosate resistance was investigated in hairy fleabane populations from California as part of providing the information needed to predict and manage resistance and to gain insight into resistance mechanism (or mechanisms) present in the populations. Three glyphosate-resistant individuals grown from seed collected from distinct sites near Fresno, CA, were crossed to individuals from the same susceptible population to create reciprocal F1populations. A single individual from each of the F1populations was used to create a backcross population with a susceptible maternal parent, and an F2population. Based on dose response analyses, reciprocal F1populations were not statistically different from each other, more similar to the resistant parent, and statistically different from the susceptible parent, consistent with nuclear control of the trait and dominance to incomplete dominance of resistance over susceptibility in all three crosses. Glyphosate resistance in two of the three crosses segregated in the backcross and the F2populations as a single-locus trait. In the remaining cross, the resistant parent had approximately half the resistance level as the other two resistant parents, and the segregation of glyphosate resistance in backcross and F2populations conformed to a two-locus model with resistance alleles acting additively and at least two copies of the allele required for expression of resistance. This two-locus model of the segregation of glyphosate resistance has not been reported previously. Variation in the pattern of inheritance and the level of resistance indicate that multiple resistance mechanisms may be present in hairy fleabane populations in California.


2022 ◽  
Author(s):  
Jamal R. Qasem

Two field experiments were conducted to evaluate the effectiveness of 12 herbicides in controlling hairy fleabane [ Conyza bonariensis (L.) Cronquist] in a date palm orchard located in the central Jordan valley during the spring of 2017. Results showed that C. bonariensis resists paraquat (2.5, 5 and 7.5kgha -1 ), oxadiazon (5kgha -1 ) and oxyflourfen (3.3kgha -1 ) herbicides applied at normal or higher than the recommended rates. None of the three herbicides was significantly effective against the weed and treated plants continued growing normally similar to those of untreated control. Higher rates (10-fold of the recommended rates) of the same herbicides failed to control the weed. The effect of other tested herbicides on the weed was varied with bromoxynil plus MCPA (buctril ® M), 2,4-D- iso-octyl ester, glyphosate, glyphosate trimesium and triclopyr were most effective and completely controlled the weed at recommended rates of application. Testing paraquat, oxadiazon and oxyflourfen using the normal recommended and 10-fold higher rates on two populations of C. bonariensis grown from seeds of the date palm and al-Twal (another site in the Jordan Valley) weed populations and grown in pots under glasshouse conditions showed that Date palm population was resistant to the three herbicides at both application rates while al-Twal site population was highly susceptible and completely controlled at normal and high rates of the three herbicides. It is concluded that certain populations of C . bonariensis developed resistance to paraquat, oxadiazon and oxyflourfen but control of this weed was possible using other herbicides of different mechanism of action. Herbicide rotation or other nonchemical weed control methods have been suggested to prevent or reduce the buildup and spread of resistant populations of this weed species. These results represent the first report on herbicide resistance of C. bonariensis in Jordan.


2008 ◽  
Vol 26 (3) ◽  
pp. 637-643 ◽  
Author(s):  
E.A. Ferreira ◽  
L. Galon ◽  
I. Aspiazú ◽  
A.A. Silva ◽  
G. Concenço ◽  
...  

The objective of this work was to evaluate the translocation of glyphosate in C. bonariensis plants resistant and susceptible to that herbicide. The 14C-glyphosate was mixed with commercial gyhphosate (800 g ha-1) and applied on the center of the adaxial face of a third node leaf, using a micro syringe, and adding 10 µL of a solution with specific activity of 1,400 Bq, 45 days after plant emergence. The concentration of the glyphosate translocated in the plant was evaluated at time intervals of 6, 12, 36 and 72 hours after being applied on the application leaf, stem, roots and leaves. Ten hours after treatment application, the distribution of the product in the application leaf, divided into base, center and apex, was also evaluated by measuring the radiation emitted by 14C-glyphosate in a liquid scintillation spectrometer. Greater glyphosate retention was observed in the resistant biotype leaf, approximately 90% of the total absorbed up to 72 hours. In the susceptible biotype, this value was close to 70% in the same period. Susceptible biotype leaves, stem and roots showed greater concentration of glyphosate, indicating greater translocation efficiency in this biotype. In the resistant biotype, the herbicide accumulated in greater quantity at the apex and center of the application leaf, while in the susceptible biotype greater accumulation was observed at the base and center leaf. Thus, it can be stated that the resistance mechanism is related to the differential translocation of this herbicide in the biotypes.


2016 ◽  
Vol 34 (3) ◽  
pp. 403-409 ◽  
Author(s):  
G. DALAZEN ◽  
L.E. CURIOLETTI ◽  
D. CAGLIARI ◽  
R.F. STACKE ◽  
J.V.C. GUEDES

ABSTRACT Weeds compete with crops for essential inputs, but they are also important hosts for pests, both during the crop and between crops. Hairy fleabane (Conyza bonariensis) is an important weed growing in both summer and winter crops. The aim of this study was to evaluate the occurrence and population fluctuations of soybean pests using hairy fleabane as an alternative host. Samples of hairy fleabane plants were collected fortnightly over twelve months at two sites (Boa Vista do Incra and São Vicente do Sul) in Rio Grande do Sul state, Brazil. The results showed that hairy fleabane plants provided shelter to important soybean pests, including the pentatomid stink bugs Edessa meditabunda, Piezodorus guildinii, Dichelop sp. and Euschistus heros, especially after soybean maturation, and also served as an alternative food source. This weedy species was also an important alternative host for caterpillars such as Anticarsia gemmatalis, Chrysodeixis includens, Spodoptera spp. and Helicoverpa gelotopoeon.


2019 ◽  
Vol 37 ◽  
Author(s):  
C. PIASECKI ◽  
A.S. MAZON ◽  
A. MONGE ◽  
J.A. CAVALCANTE ◽  
D. AGOSTINETTO ◽  
...  

ABSTRACT: Glyphosate-resistant hairy fleabane [Conyza bonariensis (L.) Cronq.] is one of the most important weeds in the world. Among the factors that make this weed species widely distributed in the most diverse environments is the high seed production capacity and dispersal. Hairy fleabane plants not controlled by herbicide application regrowth and overcome crop canopy, use environmental resources, interfere with crops, and complete their life cycle by producing thousands of seeds and replenishing the seed bank. Management strategies that reduce production and viability of hairy fleabane seeds can be adopted within the integrated management to reduce the seed bank and prevent further infestations. In this way, experiments were carried out in a greenhouse and laboratory of seed analysis to evaluate the effect of glyphosate (1,480 g a.e. ha-1) on the production and viability of glyphosate-resistant hairy fleabane seeds when applied at the vegetative and reproductive stages. Seed production was reduced by 68.4 and 100% when glyphosate was applied on hairy fleabane plants at the vegetative and early reproductive stages, respectively, regarding to the control. The viability of hairy fleabane seeds was not influenced by treatments at the evaluated stages. However, glyphosate treatment reduced the hairy fleabane seed production when applied at the vegetative stage . Hairy fleabane seed production is not feasible when glyphosate is applied at the early reproductive stage.


2018 ◽  
Vol 10 (6) ◽  
pp. 334
Author(s):  
Caroline Hernke Thiel ◽  
Felipe Adelio de David ◽  
Leandro Galon ◽  
Sidnei Deuner ◽  
Cesar Tiago Forte ◽  
...  

When plants are subjected to competition, their physiological behavior changes. To understand the developmental physiology of weeds will subsidize the development of cropping systems which favor the crops plants in detriment of weeds. The objective of this work was to evaluate the physiological behavior of different weed species, growing under intraspecific competition. Greenhouse experiment was conducted in randomized complete block design arranged in factorial scheme 4 × 5 with four replications. Factor A was the weed species [Urochloa plantaginea (Alexandrergrass), Bidens pilosa (hairy beggarticks), Ipomoea indivisa (morningglory) and Conyza bonariensis (hairy fleabane)], and factor B was the plant density of these species (20, 40, 60, 80 or 100 plants m-2). The following variables were evaluated: sub-stomatal CO2 concentration, photosynthesis rate, consumed CO2, stomatal conductance, transpiration rate, water use efficiency, plant height, shoot diameter, leaf area, and shoot dry biomass. Alexandergrass relies on the superior control of stomatal opening and high water use efficiency. Hairy beggarticks efficiency in competition lies on its ability to remove water from soil to levels when the other surrounding plant species would undergo stress. Morning glory and hairy fleabane did not present detectable particular features in the study, and their importance as weeds is probably tied to other survival abilities but superior competition. In conclusion, the weed species studied present distinct competitive strategies.


Sign in / Sign up

Export Citation Format

Share Document