scholarly journals Glyphosate Applied at the Early Reproductive Stage Impairs Seed Production of Glyphosate-Resistant Hairy Fleabane

2019 ◽  
Vol 37 ◽  
Author(s):  
C. PIASECKI ◽  
A.S. MAZON ◽  
A. MONGE ◽  
J.A. CAVALCANTE ◽  
D. AGOSTINETTO ◽  
...  

ABSTRACT: Glyphosate-resistant hairy fleabane [Conyza bonariensis (L.) Cronq.] is one of the most important weeds in the world. Among the factors that make this weed species widely distributed in the most diverse environments is the high seed production capacity and dispersal. Hairy fleabane plants not controlled by herbicide application regrowth and overcome crop canopy, use environmental resources, interfere with crops, and complete their life cycle by producing thousands of seeds and replenishing the seed bank. Management strategies that reduce production and viability of hairy fleabane seeds can be adopted within the integrated management to reduce the seed bank and prevent further infestations. In this way, experiments were carried out in a greenhouse and laboratory of seed analysis to evaluate the effect of glyphosate (1,480 g a.e. ha-1) on the production and viability of glyphosate-resistant hairy fleabane seeds when applied at the vegetative and reproductive stages. Seed production was reduced by 68.4 and 100% when glyphosate was applied on hairy fleabane plants at the vegetative and early reproductive stages, respectively, regarding to the control. The viability of hairy fleabane seeds was not influenced by treatments at the evaluated stages. However, glyphosate treatment reduced the hairy fleabane seed production when applied at the vegetative stage . Hairy fleabane seed production is not feasible when glyphosate is applied at the early reproductive stage.

2012 ◽  
Vol 5 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Angelica M. Herrera-Reddy ◽  
Raymond I. Carruthers ◽  
Nicholas J. Mills

AbstractIntegrated weed management strategies (IWM) are being advocated and employed to control invasive plants species. In this study, we compared three management strategies (biological control alone [BC], BC with fire [BC + F], and BC with mowing [BC + M]) to determine if physical controls reduce seed production by Scotch broom and interfere with the action of the biological control agent—the Scotch broom seed weevil. We measured seed production and seed predation by the weevil at both pod and plant scale, and seed bank density over two field seasons. We found no difference in the number of seeds per pod among management strategies. However, combining management strategies (BC + M and BC + F) resulted in significant reductions in pods per plant, mature seeds per plant, and seed bank density relative to biological control alone. We did not find differences among management strategies in number of weevils per pod or proportion of seeds predated by the weevil at either pod or whole-plant scale. However, combining management strategies (BC + M and BC + F) resulted in a significant reduction in healthy mature seeds per plant relative to biological control alone. Although both integrated strategies outperformed biological control alone in reducing seed production and the seed bank, with no statistical difference between them, we propose that short-rotation prescribed fire could prove to be a more effective strategy for long-term management of Scotch broom due to its potential for slightly greater depletion of the seed bank.


2010 ◽  
Vol 24 (4) ◽  
pp. 569-573 ◽  
Author(s):  
Ilias S. Travlos ◽  
Dimosthenis Chachalis

Overreliance on glyphosate can increase the risks of reduced efficacy of the herbicide on weeds and weed resistance, even in regions without glyphosate-resistant crops. That is the reality in Greece, with frequent reports of reduced efficacy of glyphosate against increasingly problematic weeds, such as Conyza spp. The objectives of this study were to determine the occurrence of glyphosate resistance in hairy fleabane populations in central and southern Greece and the effect of weed growth stage on glyphosate efficacy under controlled environmental conditions and to evaluate alternative herbicides in field trials for control of glyphosate-resistant and -susceptible hairy fleabane. Plants from 60 accessions of hairy fleabane, sampled from five prefectures in Greece, were sprayed with glyphosate at 0.36 kg ae ha−1; 15 were classified as potentially resistant. After initial screening, 15 potentially susceptible or resistant accessions were selected and dose–response experiments were conducted. Glyphosate rates required to control some accessions were four to seven times greater than that for control of the reference susceptible accession, AR4. Sensitivity of a resistant hairy fleabane accession to glyphosate was strongly dependent on growth stage, with plants at the seedling stage being most sensitive to the herbicide. A field trial indicated that diquat, glufosinate, or glufosinate + oxyfluorfen controlled glyphosate-resistant or -susceptible hairy fleabane. These herbicides, along with various integrated management strategies, have good potential to manage or slow the spread of glyphosate resistance in this species.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


2018 ◽  
Vol 35 (0) ◽  
Author(s):  
M.R.M. SILVA ◽  
E.A. COSTA ◽  
M.J.P. CORRÊA ◽  
A.A.C. RODRIGUES ◽  
M.L.R. MESQUITA

ABSTRACT: Knowledge of the floristic composition and vegetation structure are essential conditions for development of more efficient and economic weed management strategies in crops in the humid tropics. The objective of the research was to carry on floristic and phytosociological surveys to know the main weeds in upland rice fields in the humid tropics of the Brazilian State of Maranhão. Weed samples were done by means of an open metal rectangle of 0.15 m2 thrown at random in the vegetative and reproductive stages of rice crop in 2009/10 and 2010/2011 harvest. A total of 65 species from 23 families was identified 35 (53.85%) from the eudicotyledons botanical group, 29 (44.06%) from the monocotyledonous and one (1.53%) belonged to the pteridophytes. The most representative families were from the monocotyledonous botanical group including Poaceae and Cyperaceae, followed by Amaranthaceae and Malvaceae, both from the eudicotyledons group. The weed species with higher importance values in the upland rice crop vegetative stage were Urochloasp., Panicumsp., C. flavus, C. benghalensis and C. argutus whereas in the reproductive stage the higher importance values were recorded for S. latifolia, C. argutus, L. octovalvis, A.tenella and P.maximum. The most important weeds in the crop vegetative phase were mainly from the monocotyledonous group, while in reproductive one they were the eudicotyledons. Weed diversity was high and the floristic similarity was lower in the vegetative one compared to the reproductive stage of upland rice cultivation in the humid tropics.


2022 ◽  
Author(s):  
Jamal R. Qasem

Two field experiments were conducted to evaluate the effectiveness of 12 herbicides in controlling hairy fleabane [ Conyza bonariensis (L.) Cronquist] in a date palm orchard located in the central Jordan valley during the spring of 2017. Results showed that C. bonariensis resists paraquat (2.5, 5 and 7.5kgha -1 ), oxadiazon (5kgha -1 ) and oxyflourfen (3.3kgha -1 ) herbicides applied at normal or higher than the recommended rates. None of the three herbicides was significantly effective against the weed and treated plants continued growing normally similar to those of untreated control. Higher rates (10-fold of the recommended rates) of the same herbicides failed to control the weed. The effect of other tested herbicides on the weed was varied with bromoxynil plus MCPA (buctril ® M), 2,4-D- iso-octyl ester, glyphosate, glyphosate trimesium and triclopyr were most effective and completely controlled the weed at recommended rates of application. Testing paraquat, oxadiazon and oxyflourfen using the normal recommended and 10-fold higher rates on two populations of C. bonariensis grown from seeds of the date palm and al-Twal (another site in the Jordan Valley) weed populations and grown in pots under glasshouse conditions showed that Date palm population was resistant to the three herbicides at both application rates while al-Twal site population was highly susceptible and completely controlled at normal and high rates of the three herbicides. It is concluded that certain populations of C . bonariensis developed resistance to paraquat, oxadiazon and oxyflourfen but control of this weed was possible using other herbicides of different mechanism of action. Herbicide rotation or other nonchemical weed control methods have been suggested to prevent or reduce the buildup and spread of resistant populations of this weed species. These results represent the first report on herbicide resistance of C. bonariensis in Jordan.


2021 ◽  
Vol 9 (7) ◽  
pp. 407-421
Author(s):  
Nawal Al-Hajaj

In this study, we reviewed weed seed bank dynamic and main agriculture operations to come up with the weed seed management modeling designed to increase crop productivity by removing weed competition. Weed contributing with 10% loss of total global grain production. Weed seed bank regulate by five demographic processes seedling recruitment and survival, seed production, dispersal and seed survival in soil. The main agriculture operations that interference with weed seed bank are crop rotation and primary tillage. Tillage systems affect weed emergence, management, and seed production; therefore, changing tillage practices changes the composition, vertical distribution, and density of weed seed bank in agricultural soils. Weed species vary in their response to various crop rotations, due to the variability of weed-crop competition in their relative capacity to capture growth–limiting resources. Crop rotations affect weed emergence, management, composition, and density of weed seed bank. Finally, the study suggests elevating crop competitiveness against weeds, through a combination of crop rotation and reduce_ zero tillage, has strong potential to reduce weed-induced yield losses in crop.


2017 ◽  
Vol 32 (2) ◽  
pp. 159-165 ◽  
Author(s):  
Zahoor A. Ganie ◽  
Simranpreet Kaur ◽  
Prashant Jha ◽  
Vipan Kumar ◽  
Amit J. Jhala

Giant ragweed is one of the most competitive annual broadleaf weeds in corn and soybean crop production systems in the United States and eastern Canada. Management of giant ragweed has become difficult due to the evolution of resistance to glyphosate and/or acetolactate synthase (ALS)-inhibitor herbicides and giant ragweed’s ability to emerge late in the season, specifically in the eastern Corn Belt. Late-season herbicide application may reduce seed production of weed species; however, information is not available about late-season herbicide applications on giant ragweed seed production. The objective of this study was to evaluate the effect of single or sequential late-season applications of 2,4-D, dicamba, glyphosate, and glufosinate on inflorescence injury and seed production of glyphosate-resistant (GR) giant ragweed under greenhouse and field conditions (bare ground study). Single and sequential applications of glufosinate resulted in as much as 59 and 60% injury to giant ragweed inflorescence and as much as 78 and 75% reduction in seed production, respectively, under field and greenhouse conditions. In contrast, single or sequential applications of 2,4-D or dicamba resulted in ≥ 96% inflorescence injury and reduction in seed production in the field as well as in greenhouse studies. The results indicated that 2,4-D or dicamba are effective options for reducing seed production of glyphosate-resistant giant ragweed even if applied late in the season. Targeting weed seed production to decrease the soil seedbank will potentially be an effective strategy for an integrated management of GR giant ragweed.


2021 ◽  
Vol 42 (6supl2) ◽  
pp. 3567-3580
Author(s):  
Ivan Bordin ◽  
◽  
Osmar Maziero Buratto ◽  
Andreia Cristina Peres Rodrigues da Costa ◽  
Benedito Noedi Rodrigues ◽  
...  

The knowledge of the impacts of the management practices used in each agricultural production system on the ecological interactions between commercial crops and weed populations can assist in the development of specific and sustainable integrated management strategies. This study aimed to assess weed communities in soybean in succession to second-crop corn and production systems with crop diversification in Northern Paraná State. The study was conducted during three agricultural years (2014/2017). Six treatments were setup: 1 – corn/soybean, corn/soybean, and corn/soybean), 2 – white oat/soybean, rye/corn, and wheat/soybean, 3 – oat + rye/soybean, oat + radish/corn, and congo grass/soybean, 4 – canola/corn, crambe/corn, and safflower/soybean, 5 – buckwheat/ radish/corn, bean/soybean, and buckwheat/oat/soybean, and 6 – wheat/corn + congo grass, canola/corn, and bean/soybean. The relative importance value index of each weed species and the soil cover (soil, straw, and weeds) were assessed. The experimental design consisted of randomized blocks with four replications of 300 m2 (20 × 15 m). The production systems white oat/soybean, rye/corn, and wheat/soybean; buckwheat/radish/corn, bean/soybean, buckwheat/oat/soybean; and wheat/corn+congo grass, canola/corn, bean/soybean had a suppressive effect on the species Commelina benghalensis. Euphorbia heterophylla and Digitaria horizontalis were the species most adapted to the assessed production systems. Seeds remaining from crambe and radish cultivations became volunteer plants in subsequent cultivations.


2021 ◽  
pp. 1-22
Author(s):  
Marcelo L. Moretti ◽  
Lucas K. Bobadilla ◽  
Bradley D. Hanson

Abstract Hairy fleabane and horseweed are pervasive weed species in agriculture. Glyphosate-resistant (GR) and glyphosate-paraquat-resistant (GPR) biotypes challenge current management strategies. These GR and GPR biotypes have non-target-site-resistance (NTSR), which can confer resistance to herbicides with different sites of action. This study’s objective was to characterize the response of GR, GPR, and glyphosate-paraquat-susceptible (GPS) biotypes of both Conyza spp. to herbicides with a different site of action. Whole-plant dose-response bioassays indicated a similar response among tested biotypes of both Conyza spp. to rimsulfuron, dicamba, hexazinone, glufosinate, flumioxazin, saflufenacil, or mesotrione. The C. bonariensis GR and GPR biotypes were 2.7- and 2.9-fold resistant to 2,4-D relative to the GPS biotype (GR50 766.7 g ai ha-1), confirming 2,4-D resistance in C. bonariensis for the first time in California. The GR and GPR biotypes were not cross-resistant to dicamba. No differences in response to 2,4-D were observed among C. canadensis biotypes with a GR50 ranging from 150.2 to 277.4 g ai ha-1. The GPR biotypes of both species were cross-resistant to diquat with a 44.0-fold resistance in C. bonariensis (GR50 863.7 g ai ha-1) and 15.6-fold resistance in C. canadensis (GR50 563.1 g ai ha-1). The confirmation of multiple resistances to glyphosate, paraquat, and 2,4-D in C. bonariensis curtails herbicide site of action alternatives and jeopardizes resistance management strategies based on herbicide rotation and tank-mixtures, underscoring the critical need for non-chemical weed control alternatives.


Sign in / Sign up

Export Citation Format

Share Document