scholarly journals A Study on an Optimal Spot-weld Layout Design for a Shock Tower Structure Considering the Fatigue Life under Random Vibration Loads

Author(s):  
Yong-Hoon Lee ◽  
Seung-Yoon Lee ◽  
Bok-Soo Bae ◽  
Sang-Beom Lee ◽  
Hong-Jae Yim
AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 2001-1758
Author(s):  
Romualdo Ruotolo ◽  
Massimiliano Cotterchio

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


Author(s):  
Tae-Yong Park ◽  
Hyun-Ung Oh

Abstract To overcome the theoretical limitations of Steinberg's theory for evaluating the mechanical safety of the solder joints of spaceborne electronics in a launch random vibration environment, a critical strain-based methodology was proposed and validated in a previous study. However, for the critical strain-based methodology to be used reliably in the mechanical design of spaceborne electronics, its effectiveness must be validated under various conditions of the package mounting locations and the first eigenfrequencies of a printed circuit board (PCB); achieving this validation is the primary objective of this study. For the experimental validation, PCB specimens with ball grid array packages mounted on various board locations were fabricated and exposed to a random vibration environment to assess the fatigue life of the solder joint. The effectiveness of the critical strain-based methodology was validated through a comparison of the fatigue life of the tested packages and their margin of safety, which was estimated using various analytical approaches.


Author(s):  
Pol Spanos ◽  
Alba Sofi ◽  
Juan Wang ◽  
Berry Peng

Pipelines located on the decks of FPSO systems are exposed to damage due to sea waves induced random loading. In this context, a methodology for estimating the fatigue life of conveying-fluid pipelines is presented. The pipeline is subjected to a random support motion which simulates the effect of the FPSO heaving. The equation of motion of the fluid-carrying pipeline is derived by assuming small amplitude displacements, modeling the empty pipeline as a Bernoulli-Euler beam, and adopting the so-called “plug-flow” approximation for the fluid (Pai¨doussis, 1998). Random vibration analysis is carried out by the Galerkin method selecting as basis functions the natural modes of a beam with the same boundary conditions as the pipeline. The discretized equations of motion are used in conjunction with linear random vibration theory to compute the stress spectrum for a generic section of the pipeline. For this purpose, the power spectrum of the acceleration at the deck level is determined by using the Response Amplitude Operator of the FPSO hull. Finally, the computed stress spectrum is used to estimate the pipeline fatigue life employing an appropriate S-N fatigue curve of the material. An illustrative example concerning a pipeline simply-supported at both ends is included in the paper.


Author(s):  
Nana Wang ◽  
Jinxiang Liu ◽  
Qing Zhang ◽  
Hailin Yang ◽  
Mu Tang

Failure of the light beam direction adjusting mechanism (LDAM) of an automotive headlight might occur after hundreds of driving hours, though the strength of components conforms to the requirement specified in the random vibration bench test standard. In order to determine the causes of the failure, fatigue life prediction and failure analysis based on numerical method of the LDAM exposed to random loading both in bench test and field experiment were carried out. In the bench test analysis, the Dirlik method was utilized to calculate the lifetime by taking the power spectrum density in the frequency domain. In the fatigue analysis for the field experimental loading, to consider the effect of nonuniform temperature distribution, a numerical process in time domain is developed to calculate the lifetime of the LDAM subjected to the random vibration caused by road surface roughness. As a result, the predicted life and failure locations are in good agreement with real life and actual failure regions, respectively.


Author(s):  
Zhengbo Luo ◽  
Huaihai Chen ◽  
Xudong He ◽  
Ronghui Zheng

Two time domain models for fatigue life prediction under multiaxial random vibrations are developed on the basis of the critical plane approach. Firstly, the stress power spectral density matrix of each node at the notch root of the test specimen is obtained by the random vibration analysis with finite element method, and the stress time-histories are generated from the stress power spectral density matrix by the time domain randomization approach. Then, the fatigue life of each node is predicted based on the damage on the critical plane, where the cumulative damage value is the greatest. The minimum fatigue life of all nodes at the notch root is considered as the fatigue life of the test specimen. Finally, the proposed models are validated by the multiaxial random vibration fatigue test with the 6061-T4 aluminum alloy. The results show that the predicted fatigue lives and predicted crack orientation angles are in good agreement with the experimental fatigue lives and experimentally observed crack orientation angles, respectively.


Sign in / Sign up

Export Citation Format

Share Document