scholarly journals INFLUENCE OF CRITICAL PARAMETERS ON LIQUID THIN FILM FLOW OF CASSON NANO FLUID OVER ELONGATED SHEET UNDER THERMOPHOROSIS AND BROWNIAN MOTION

2020 ◽  
Vol 15 ◽  
Author(s):  
N. Vijaya ◽  
Sunil Babu G ◽  
Vellanki Lakshmi N
2019 ◽  
Vol 13 ◽  
pp. 174830181983245 ◽  
Author(s):  
Muhammad Jawad ◽  
Zahir Shah ◽  
Saeed Islam ◽  
Waris Khan ◽  
Aurang Zeb Khan

This research paper investigates two dimensional liquid film flow of Sisko nanofluid with variable heat transmission over an unsteady stretching sheet in the existence of uniform magnetic field. The basic governing time-dependent equations of the nanofluid flow phenomena with Sisko fluid are modeled and reduced to a system of differential equations with use of similarity transformation. The significant influence of Brownian motion and thermophoresis has been taken in the nanofluids model. An optimal approach is used to obtain the solution of the modeled problems. The convergence of the Homotopy Analysis Method (HAM) method has been shown numerically. The variation of the skin friction, Nusselt number and Sherwood number, their influence on liquid film flow with heat and mass transfer have been examined. The influence of the unsteadiness parameter [Formula: see text] over thin film is explored analytically for different values. Moreover for comprehension, the physical presentation of the embedded parameters, like [Formula: see text], magnetic parameter [Formula: see text], stretching parameter [Formula: see text] and Sisko fluid parameters [Formula: see text], Prandtl number Pr, thermophoretic parameter [Formula: see text], Brownian motion parameter [Formula: see text], Schmidt number [Formula: see text] have been represented by graph and discussed.


2019 ◽  
Vol 16 (4) ◽  
pp. 811-834
Author(s):  
C. Sulochana ◽  
S.R. Aparna

Purpose The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis, Brownian motion and radiation. Design/methodology/approach The authors initially altered the time dependent set of mathematical equations into dimensionless form of equations by using apposite transmutations. These equations are further solved numerically by deploying Runge–Kutta method along with shooting technique. Findings Plots and tables for skin friction coefficient, Nusselt number, Sherwood number along with velocity, temperature and concentration profiles against pertinent non-dimensional parameters are revealed. The study imparts that aluminium–copper hybrid nanoparticles facilitate higher heat transfer rate compared to mono nanoparticles. It is noteworthy to disclose that an uplift in thermophoresis and Brownian parameter depreciates heat transfer rate, while concentration profiles boost with an increase in thermophoretic parameter. Research limitations/implications The current study targets to investigate heat transfer characteristics of an unsteady thin film radiative flow of water-based aluminium and copper hybrid nanofluid. The high thermal and electrical conductivities, low density and corrosion resistant features of aluminium and copper with their wide range of industrial applications like power generation, telecommunication, automobile manufacturing, mordants in leather tanning, etc., have prompted us to instil these particles in the present study. Practical implications The present study has many practical implications in the industrial and manufacturing processes working on the phenomena like heat transfer, magnetohydrodynamics, thermal radiation, nanofluids, hybrid nanofluids with special reference to aluminium and copper particles. Originality/value To the best extent of the authors’ belief so far no attempt is made to inspect the flow, thermal and mass transfer of water-based hybridized aluminium and copper nanoparticles with Brownian motion and thermophoresis.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Asifa Tassaddiq ◽  
Ibni Amin ◽  
Meshal Shutaywi ◽  
Zahir Shah ◽  
Farhad Ali ◽  
...  

In this article a couple stress magneto-hydrodynamic (MHD) nanofluid thin film flow over an exponential stretching sheet with joule heating and viscous dissipation is considered. Similarity transformations were used to obtain a non-linear coupled system of ordinary differential equations (ODEs) from a system of constitutive partial differential equations (PDEs). The system of ordinary differential equations of couple stress magneto-hydrodynamic (MHD) nanofluid flow was solved using the well-known Homotopy Analysis Method (HAM). Nusselt and Sherwood numbers were demonstrated in dimensionless forms. At zero Prandtl number the velocity profile was analytically described. Furthermore, the impact of different parameters over different state variables are presented with the help of graphs. Dimensionless numbers like magnetic parameter M, Brownian motion parameter Nb, Prandtl number Pr, thermophoretic parameter Nt, Schmidt number Sc, and rotation parameter S were analyzed over the velocity, temperature, and concentration profiles. It was observed that the magnetic parameter M increases the axial, radial, drainage, and induced profiles. It was also apparent that Nu reduces with greater values of Pr. On increasing values of the Brownian motion parameter the concentration profile declines, while the thermophoresis parameter increases.


Coatings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Asad Ullah ◽  
Ebraheem Alzahrani ◽  
Zahir Shah ◽  
Muhammad Ayaz ◽  
Saeed Islam

The current investigation is carried out on the thin film flow of Reiner-Philippoff fluid of boundary-layer type. We have analyzed the flow of thin films of Reiner-Philippoff fluid in the changeable heat transmission and radiation over a time-dependent stretching sheet in 2D. The time-dependent governing equations of Reiner-Philippoff fluid model are simplified with the help of transformation of similarity variables. To investigate the behavior of the Reiner-Philippoff fluid with variable stretching surface for different physical effects, we considered thermophoresis and Brownian motion parameters in the flow. The Homotopy Analysis Method is implemented in the reduced model to achieve a solution of the original problem. A numerical convergence of the implemented method is also analyzed. The behavior of temperature, velocity, and concentration profiles have been investigated with the variation of skin friction, Nusselt number, and Sherwood number. A comparative graphical survey is presented for the velocity gradient, under different parameters. An analytical analysis is presented for the time-dependent parameter over thin film flow. The results we obtained are better than the previously available results. For the survey, the physical representation of the embedded parameters, like, β depends on the stretching parameter ζ , and the Reiner-Philippoff fluid parameter ϵ are discussed in detail and plotted graphically. Prandtl number P r , Brownian motion parameter N b , thermophoretic number N t , and Schmidt number S c are presented by graphs and discussed in detail.


2013 ◽  
Vol 19 (4) ◽  
pp. 513-527
Author(s):  
Kamran Alam ◽  
M.T. Rahim ◽  
S. Islam ◽  
A.M. Sidiqqui

In this study, the pseudo plastic model is used to obtain the solution for the steady thin film flow on the outer surface of long vertical cylinder for lifting and drainage problems. The non-linear governing equations subject to appropriate boundary conditions are solved analytically for velocity profiles by a modified homotopy perturbation method called the Optimal Homotopy Asymptotic method. Expressions for the velocity profile, volume flux, average velocity, shear stress on the cylinder, normal stress differences, force to hold the vertical cylindrical surface in position, have been derived for both the problems. For the non-Newtonian parameter ?=0, we retrieve Newtonian cases for both the problems. We also plotted and discussed the affect of the Stokes number St, the non-Newtonian parameter ? and the thickness ? of the fluid film on the fluid velocities.


Author(s):  
Farhan Ahmad ◽  
Taza Gul ◽  
Imran Khan ◽  
Anwar Saeed ◽  
Mahmoud Mohamed Selim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document