scholarly journals F3-1 Effects of Controller and Body Posture On Simulator Sickness and Visual Fatigue in Virtual Reality

2017 ◽  
Vol 53 (Supplement2) ◽  
pp. S442-S445
Author(s):  
Bingcheng Wang ◽  
Pei-Luen Patrick Rau ◽  
Lili Dong
Ergonomics ◽  
2021 ◽  
pp. 1-23
Author(s):  
Sang Hyeok Lee ◽  
Martha Kim ◽  
Hyosun Kim ◽  
Choul Yong Park

Author(s):  
Moshe M. H. Aharoni ◽  
Anat V. Lubetzky ◽  
Liraz Arie ◽  
Tal Krasovsky

Abstract Background Persistent postural-perceptual dizziness (PPPD) is a condition characterized by chronic subjective dizziness and exacerbated by visual stimuli or upright movement. Typical balance tests do not replicate the environments known to increase symptoms in people with PPPD—crowded places with moving objects. Using a virtual reality system, we quantified dynamic balance in people with PPPD and healthy controls in diverse visual conditions. Methods Twenty-two individuals with PPPD and 29 controls performed a square-shaped fast walking task (Four-Square Step Test Virtual Reality—FSST-VR) using a head-mounted-display (HTC Vive) under 3 visual conditions (empty train platform; people moving; people and trains moving). Head kinematics was used to measure task duration, movement smoothness and anterior–posterior (AP) and medio-lateral (ML) ranges of movement (ROM). Heart rate (HR) was monitored using a chest-band. Participants also completed a functional mobility test (Timed-Up-and-Go; TUG) and questionnaires measuring anxiety (State-Trait Anxiety Inventory; STAI), balance confidence (Activities-Specific Balance Confidence; ABC), perceived disability (Dizziness Handicap Inventory) and simulator sickness (Simulator Sickness Questionnaire). Main effects of visual load and group and associations between performance, functional and self-reported outcomes were examined. Results State anxiety and simulator sickness did not increase following testing. AP-ROM and HR increased with high visual load in both groups (p < 0.05). There were no significant between-group differences in head kinematics. In the high visual load conditions, high trait anxiety and longer TUG duration were moderately associated with reduced AP and ML-ROM in the PPPD group and low ABC and  high perceived disability were associated with reduced AP-ROM (|r| =  0.47 to 0.53; p < 0.05). In contrast, in controls high STAI-trait, low ABC and longer TUG duration were associated with increased AP-ROM (|r| = 0.38 to 0.46; p < 0.05) and longer TUG duration was associated with increased ML-ROM (r = 0.53, p < 0.01). Conclusions FSST-VR may shed light on movement strategies in PPPD beyond task duration. While no main effect of group was observed, the distinct associations with self-reported and functional outcomes, identified using spatial head kinematics, suggest that some people with PPPD reduce head degrees of freedom when performing a dynamic balance task. This supports a potential link between spatial perception and PPPD symptomatology.


2019 ◽  
Vol 25 (9) ◽  
pp. 859-861 ◽  
Author(s):  
Greg M. Reger ◽  
Derek Smolenski ◽  
Amanda Edwards-Stewart ◽  
Nancy A. Skopp ◽  
Albert “Skip” Rizzo ◽  
...  

2020 ◽  
Vol 47 (4) ◽  
pp. 362-367
Author(s):  
Wonjun Seong ◽  
Byungmoon Kim ◽  
BoYu Gao ◽  
Jini Kwon ◽  
HyungSeok Kim

2013 ◽  
Vol 22 (1) ◽  
pp. 20-35 ◽  
Author(s):  
Weixin Wu ◽  
Yujie Dong ◽  
Adam Hoover

This paper describes a new method for measuring the end-to-end latency between sensing and actuation in a digital computing system. Compared to previous works, which generally measured the latency at 10–33-ms intervals or at discrete events separated by hundreds of ms, our new method measures the latency continuously at 1-ms resolution. This allows for the observation of variations in latency over sub 1-s periods, instead of relying upon averages of measurements. We have applied our method to two systems, the first using a camera for sensing and an LCD monitor for actuation, and the second using an orientation sensor for sensing and a motor for actuation. Our results show two interesting findings. First, a cyclical variation in latency can be seen based upon the relative rates of the sensor and actuator clocks and buffer times; for the components we tested, the variation was in the range of 15–50 Hz with a magnitude of 10–20 ms. Second, orientation sensor error can look like a variation in latency; for the sensor we tested, the variation was in the range of 0.5–1.0 Hz with a magnitude of 20–100 ms. Both of these findings have implications for robotics and virtual reality systems. In particular, it is possible that the variation in apparent latency caused by orientation sensor error may have some relation to simulator sickness.


2021 ◽  
Vol 10 (5) ◽  
pp. 3546-3551
Author(s):  
Tamanna Nurai

Cybersickness continues to become a negative consequence that degrades the interface for users of virtual worlds created for Virtual Reality (VR) users. There are various abnormalities that might cause quantifiable changes in body awareness when donning an Head Mounted Display (HMD) in a Virtual Environment (VE). VR headsets do provide VE that matches the actual world and allows users to have a range of experiences. Motion sickness and simulation sickness performance gives self-report assessments of cybersickness with VEs. In this study a simulator sickness questionnaire is being used to measure the aftereffects of the virtual environment. This research aims to answer if Immersive VR induce cybersickness and impact equilibrium coordination. The present research is formed as a cross-sectional observational analysis. According to the selection criteria, a total of 40 subjects would be recruited from AVBRH, Sawangi Meghe for the research. With intervention being used the experiment lasted 6 months. Simulator sickness questionnaire is used to evaluate the after-effects of a virtual environment. It holds a single period for measuring motion sickness and evaluation of equilibrium tests were done twice at exit and after 10 mins. Virtual reality being used in video games is still in its development. Integrating gameplay action into the VR experience will necessitate a significant amount of study and development. The study has evaluated if Immersive VR induce cybersickness and impact equilibrium coordination. To measure cybersickness, numerous scales have been developed. The essence of cybersickness has been revealed owing to work on motion sickness in a simulated system.


2020 ◽  
Author(s):  
Simone Grassini ◽  
Karin Laumann ◽  
Ann Kristin Luzi

Many studies have attempted to understand which individual differences may be related to the symptoms of discomfort during the virtual experience (simulator sickness) and the generally considered positive sense of being inside the simulated scene (sense of presence). Nevertheless, due to the quick technological advancement in the field of virtual reality, most of these studies are now outdated. Advanced technology for virtual reality is commonly mediated by head-mounted displays (HMDs), which aim to increase the sense of the presence of the user, remove stimuli from the external environment, and provide high definition, photo-realistic, three-dimensional images. Our results showed that motion sickness susceptibility and simulator sickness are related and neuroticism may be associated and predict simulator sickness. Furthermore, the results showed that people who are more used to playing video-games are less susceptible to simulator sickness; female participants reported more simulator sickness compared to males (but only for nausea-related symptoms). Female participants also experienced a higher sense of presence compared to males. We suggests that published findings on simulator sickness and the sense of presence in virtual reality environments need to be replicated with the use of modern HMDs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261220
Author(s):  
Zijun Zhou ◽  
Jiaxin Li ◽  
He Wang ◽  
Ze Luan ◽  
Yuan Li ◽  
...  

Background Functional exercise is crucial for breast cancer patients after surgery, and the use of virtual reality technology to assist patients with postoperative upper limb functional rehabilitation has gradually attracted the attention of researchers. However, the usability of the developed rehabilitation system is still unknown to a large extent. The purpose of this study was to develop a virtual reality upper limb rehabilitation system for patients after breast cancer surgery and to explore its usability. Methods We built a multidisciplinary team based on virtual reality and human-computer interaction technology and designed and developed an upper limb function rehabilitation system for breast cancer patients after surgery. Breast cancer patients were recruited from a grade III-a general hospital in Changchun city for the experiment. We used the System Usability Scale to evaluate the system availability, the Presence Questionnaire scale to measure the immersive virtual reality scene, and the Simulator Sickness Questionnaire subjective measurement scale for simulator sickness symptoms. Results This upper limb rehabilitation system hardware consisted of Head-mounted Display, a control handle and notebook computers. The software consisted of rehabilitation exercises and game modules. A total of 15 patients were tested on this system, all of whom were female. The mean age was 54.73±7.78 years, and no patients were excluded from the experiment because of adverse reactions such as dizziness and vomiting. The System Usability Scale score was 90.50±5.69, the Presence Questionnaire score was 113.40±9.58, the Simulator Sickness Questionnaire-nausea score was 0.93±1.16, the Simulator Sickness Questionnaire-oculomotor score was 0.80±1.27, the Simulator Sickness Questionnaire-disorientation score was 0.80±1.27, and the Simulator Sickness Questionnaire total score was 2.53±3.40. Conclusions This study fills in the blanks regarding the upper limb rehabilitation of breast cancer patients based on virtual reality technology system usability research. As the starting point of research in the future, we will improve the system’s function and design strictly randomized controlled trials, using larger samples in the promotion, to evaluate its application in breast cancer patients with upper limbs and other physiological functions and the feasibility and effects of rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document