scholarly journals Genetic Diversity of Myanmar Rice Cultivars Detected by DNA markers

10.5109/9227 ◽  
2006 ◽  
Vol 51 (2) ◽  
pp. 181-187
Author(s):  
Ohm Mar Saw ◽  
Kazuyuki Doi ◽  
Aye Khin ◽  
Kenji Irie ◽  
Atsushi Yoshimura
2009 ◽  
Vol 6 (2) ◽  
pp. 179-289
Author(s):  
Baghdad Science Journal

This study was carried out to assess genetic diversity of ten cultivars of Rice (Oryza sativa L.). One of DNA markers based on Polymerase Chain Reaction (PCR) was used namely DAF markers (DNA Amplification Fingerprint). Six primers were tested, the results showed, that no amplification products using the primers OPD.14 and OPM.5. Two primers (OPX.8 and OPT.2) produced monomorphic band across all cultivars, while only two primers generated polymorphic bands. The number of total bands produced from one of them (OPN.7) were sixteen. Also this primer produced ten polymorphic profiles (DAF patterns) which were unique to the ten cultivars that could be distinguished. The number of total bands generated by primer OPX.1 were thirteen and this primer produced eight polymorphic patterns which was unique for distinguishing six cultivars. This means that DAF markers were able to identify all rice cultivars using only two primers reflecting the high potentialities of these markers for their applications in fingerprinting.


2018 ◽  
Vol 51 ◽  
pp. 185-192
Author(s):  
S. Kruhlyk ◽  
V. Dzitsiuk ◽  
V. Spyrydonov

Genetic variability of domestic dogs is a source for effective process of breed formation and creating unique gene complexes. In the world, for preservation of genetic resources of dogs, there are dog training associations which have great confidence: American Club Dog Breeders (AKC), the British Kennel Club (KC) and the Federation Cynologique Internationale (FCI), aimed at protecting breeding dogs, standards creation, registration of a breed, and issuance of accurate pedigrees. Evaluation of the genetic diversity of dog breeds is able to significantly complement and improve their breeding programs. Since breeds of dog differ in morphological and economic characteristics, the problem of finding of the breed features in the genome of animals is becoming more topical. From this point of view, French Bulldog is an interesting breed of dog (FRANC.BULLDOGGE, FCI standard number 101) which belongs by the classification of breeds, adopted in FCI, to the group IX – a dog-companion for health and fun, but to a subgroup of fighting dogs of a small format. French Bulldog breed has been researched slightly not only in Ukraine and also abroad, as the main work of all dog association is focused on solving theoretical and practical issues of breeding, keeping, feeding, veterinary protection and others. The study was conducted at Research Department of Molecular Diagnostic Tests of Ukrainian Laboratory of Quality and Safety of Agricultural Products. 33 animals of French Bulldog breed, admitted to use in dog breeding of Ukrainian Kennel Union (UKU), were involved for the genetic analysis using DNA markers. The materials of the research were buccal epithelial cells, selected before the morning feeding of animals by scraping mucous membrane of oral cavity with disposable, dry, sterile cotton swab. Genomic DNA was extracted using KIT-set of reagents for DNA isolation according to the manufacturer's instructions. PEZ1, PEZ3, PEZ6, PEZ8, FHC 2010, FHC 2054 markers, recommended by International Society for Animal Genetics (ISAG), ACN, КC and FCI, were used for research. As a result of research 25 alleles for all the loci were detected in the experimental sample of dogs. The average number of alleles at the locus Na, obtained by direct counting, was 4.16. The most polymorphic loci for this breed were PEZ6 and PEZ3 with 8 and 6 allelic variants. Monomorphic loci were PEZ8 and FHC 2054 which had 4 and 3 alleles and the lowest level of polymorphism was observed for PEZ 1 and FHC 2010 loci in which only 2 alleles were identified. On analyzing the molecular genetic characteristics of dogs of French Bulldog breed, we found a high variability of genotype on rare alleles, which included alleles: M, C, D, E, J, K, L, O, N and representing 60% of the total number of the identified alleles. C, D, E alleles for PEZ3 locus and O allele at PEZ6 locus are unique to the sampling of dogs because they are not repeated in other loci. Typical alleles: N, F, R, I, P, K, M are 40% of the total. But F, R alleles for PEZ3 locus and P allele for locus PEZ6 are not repeated either in standard allelic variants or in rare one, indicating a high information content of these alleles and loci to be used for further monitoring of allele pool, genetic certification and identification of dogs. Microsatellite DNA loci were analyzed as a result of investigations of French Bulldogs and the most informative: PEZ3, PEZ6 and PEZ8 were found, which have high efficiency in individual and breed certification of dogs due to high variability. These data allow further monitoring of the state of genetic diversity of the breed and the development of measures for improvement of breeding to preserve the structure of breeding material. The study of individual and population genetic variability is advisable to continue for breeding of French Bulldogs "in purity" and preserving valuable gene complexes. The results are the basis for further monitoring of the proposed informative panels of microsatellite DNA markers for genotyping dog of French Bulldog breed and their complex evaluation.


2007 ◽  
Vol 24 (0) ◽  
Author(s):  
R.C. Sharma ◽  
N.K. Chaudhary ◽  
B.R. Ojha ◽  
B.K. Joshi ◽  
M.P. Pandey ◽  
...  

2008 ◽  
Vol 16 (2) ◽  
pp. 156
Author(s):  
Liao Xinjun ◽  
Chang Hong ◽  
Zhang Guixiang ◽  
Wang Donglei ◽  
Song Weitao ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Leonard Bonilha Piveta ◽  
Nilda Roma-Burgos ◽  
José Alberto Noldin ◽  
Vívian Ebeling Viana ◽  
Claudia de Oliveira ◽  
...  

Rice is the staple food for about half of the world population. Rice grain yield and quality are affected by climatic changes. Arguably, rice cultivars’ genetic diversity is diminished from decades of breeding using narrow germplasm, requiring introgressions from other Oryza species, weedy or wild. Weedy rice has high genetic diversity, which is an essential resource for rice crop improvement. Here, we analyzed the phenotypic, physiological, and molecular profiles of two rice cultivars (IRGA 424 and SCS119 Rubi) and five weedy rice (WR), from five different Brazilian regions, in response to heat and drought stress. Drought and heat stress affected the phenotype and photosynthetic parameters in different ways in rice and WR genotypes. A WR from Northern Brazil yielded better under heat stress than the non-stressed check. Drought stress upregulated HSF7A while heat stress upregulated HSF2a. HSP74.8, HSP80.2, and HSP24.1 were upregulated in both conditions. Based on all evaluated traits, we hypothesized that in drought conditions increasing HSFA7 expression is related to tiller number and that increase WUE (water use efficiency) and HSFA2a expression are associated with yield. In heat conditions, Gs (stomatal conductance) and E’s increases may be related to plant height; tiller number is inversely associated with HSPs expression, and chlorophyll content and Ci (intercellular CO2 concentration) may be related to yield. Based on morphology, physiology, and gene regulation in heat and drought stress, we can discriminate genotypes that perform well under these stress conditions and utilize such genotypes as a source of genetic diversity for rice breeding.


2012 ◽  
Vol 44 (4) ◽  
pp. 588-596 ◽  
Author(s):  
Kang Hee Cho ◽  
◽  
Eun Young Nam ◽  
Kyung-Mi Bae ◽  
Il Sheob Shin ◽  
...  

2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


Sign in / Sign up

Export Citation Format

Share Document