scholarly journals Design of Active Electromagnetic Interference Filter to Eliminate Common-mode Noise in Conducted Interference

2012 ◽  
Vol 43 (11) ◽  
pp. 10-15
Author(s):  
P. V.Y.Jayasree ◽  
G. Raghu Poojita ◽  
J. Chaitanya Priya
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 282
Author(s):  
Seon-Ik Hwang ◽  
Jang-Mok Kim

The common-mode voltage (CMV) generated by the switching operation of the pulse width modulation (PWM) inverter leads to bearing failure and electromagnetic interference (EMI) noises. To reduce the CMV, it is necessary to reduce the magnitude of dv/dt and change the frequency of the CMV. In this paper, the range of the CMV is reduced by using opposite triangle carrier for ABC and XYZ winding group, and the change in frequency in the CMV is reduced by equalizing the dwell time of the zero voltage vector on ABC and XYZ winding group of dual three phase motor.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3395 ◽  
Author(s):  
Umashankar Subramaniam ◽  
Sagar Mahajan Bhaskar ◽  
Dhafer J.Almakhles ◽  
Sanjeevikumar Padmanaban ◽  
Zbigniew Leonowicz

Power inverters produce common mode voltage (CMV) and common mode current (CMC) which cause high-frequency electromagnetic interference (EMI) noise, leakage currents in electrical drives application and grid-connected systems, which consequently drops the efficiency of the system considerably. This CMV can be mitigated by designing suitable EMI filters and/or investigating the effects of different modulation strategies. In this paper, the effect of various modulation techniques over CMV and CMC are investigated for two-level and three-level inverters. It is observed that the modified third harmonic injection method reduced the CMV and CMC in the system by 60%. This modified pulse width modulation (PWM) technique is employed along with EMI chokes which results in reduced distortion of the system.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1607
Author(s):  
Chang-Hwan Park ◽  
In-Kyo Seo ◽  
Belete Belayneh Negesse ◽  
Jong-su Yoon ◽  
Jang-Mok Kim

Low level modular multilevel converter (MMC) is a promising candidate for medium voltage applications such as MVDC (medium voltage DC current) transmission and megawatt machine drives. Unlike high-level MMC using nearest level modulation (NLM), the low-level MMC using the pulse width modulation (PWM) or NLM + PWM is affected by a common mode voltage (CMV) due to a frequent change of a switching state. This CMV causes electromagnetic interference (EMI) noise, common mode current (CMC) and bearing current leading to a reduction in the efficiency and durability of the motor drive system. Therefore, this paper provides a mathematical analysis on how the switching state affects the CMV and proposes three software based CMV reduction algorithms for the low level MMC system. To reflect the characteristic of MMC modulation strategy for upper and lower reference voltage independently, two separate space vectors are used. Based on the analysis, three different CMV reduction algorithms (complete CMV reduction (CCR), DPWM CMV reduction (DCR) and partial CMV reduction (PCR)) are proposed using NLC + PWM modulation strategy. The performance of the proposed CMV reduction algorithms was verified by both simulation and experimental result.


2021 ◽  
Vol 12 (3) ◽  
pp. 127
Author(s):  
Ruoxi Tan ◽  
Shangbin Ye ◽  
Cheng Yu ◽  
Chenghao Deng ◽  
Anjian Zhou

The strong electromagnetic interference produced by the electric drive system is the main factor that leads to the strong radiated emission of electric vehicles. It is very important to study the influence of the electric drive system on vehicle-radiated emission by taking the common-mode current of the electric drive system as the interference source. In this paper, the conducted emission model of the electric drive system is proposed, and the common-mode current is calculated by this model. The influence of filter on the common-mode interference current of HVDC cables is calculated and analyzed, and then the radiating antenna effect model of HVDC cables is established. Based on this, a vehicle-level radiated emission simulation model including an electric drive system and DC cables was established. The effectiveness of the conducted emission model was verified by experiments. The effects of different shielding structures on the shielding efficiency of HVDC cables were compared. Quantitative guidance for EMI suppression design of multi-in-one electric drive system design can be provided by the model in this paper.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 480
Author(s):  
Shuaitao Zhang ◽  
Baihua Zhang ◽  
Qiang Lin ◽  
Eiji Takegami ◽  
Masahito Shoyama ◽  
...  

As an effective means of suppressing electromagnetic interference (EMI) noise, the impedance balancing technique has been adopted in the literature. By suppressing the noise source, this technique can theoretically reduce the noise to zero. Nevertheless, its effect is limited in practice and also suffers from noise spikes. Therefore, this paper introduces an accurate frequency modeling method to investigate the attenuation degree of noise source and redesign the impedance selection accordingly in order to improve the noise reduction capability. Based on a conventional boost converter, the common mode (CM) noise model was built by identifying the noise source and propagation paths at first. Then the noise source model was extracted through capturing the switching voltage waveform in time domain and then calculating its Fourier series in frequency domain. After that, the conventional boost converter was modified with the known impedance balancing techniques. This balanced circuit was analyzed with the introduced modeling method, and the equivalent noise source was precisely estimated by combining the noise spectra and impedance information. Furthermore, two optimized schemes with redesigned impedances were proposed to deal with the resonance problem. A hardware circuit was designed and built to experimentally validate the proposed concepts. The experimental results demonstrate the feasibility and effectiveness of the proposed schemes.


Sign in / Sign up

Export Citation Format

Share Document