scholarly journals Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3395 ◽  
Author(s):  
Umashankar Subramaniam ◽  
Sagar Mahajan Bhaskar ◽  
Dhafer J.Almakhles ◽  
Sanjeevikumar Padmanaban ◽  
Zbigniew Leonowicz

Power inverters produce common mode voltage (CMV) and common mode current (CMC) which cause high-frequency electromagnetic interference (EMI) noise, leakage currents in electrical drives application and grid-connected systems, which consequently drops the efficiency of the system considerably. This CMV can be mitigated by designing suitable EMI filters and/or investigating the effects of different modulation strategies. In this paper, the effect of various modulation techniques over CMV and CMC are investigated for two-level and three-level inverters. It is observed that the modified third harmonic injection method reduced the CMV and CMC in the system by 60%. This modified pulse width modulation (PWM) technique is employed along with EMI chokes which results in reduced distortion of the system.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 282
Author(s):  
Seon-Ik Hwang ◽  
Jang-Mok Kim

The common-mode voltage (CMV) generated by the switching operation of the pulse width modulation (PWM) inverter leads to bearing failure and electromagnetic interference (EMI) noises. To reduce the CMV, it is necessary to reduce the magnitude of dv/dt and change the frequency of the CMV. In this paper, the range of the CMV is reduced by using opposite triangle carrier for ABC and XYZ winding group, and the change in frequency in the CMV is reduced by equalizing the dwell time of the zero voltage vector on ABC and XYZ winding group of dual three phase motor.


Author(s):  
Nuttawout Buarat ◽  
Yuttana Kumsuwan

The popular motor drive systems with a single two-level voltage source inverter (VSI) have one main problem that is the occurrence of the common-mode voltage (CMV), which is an effect of the electromagnetic interference, shaft voltage, bearing currents, leakage current. These cause the high stress, increasung temperature and early mechanical failure in machine. To overcome this problem, the technology of the dual two-level VSI fed open-end three-phase ac loads is now available to eliminate the CMV at the ac/induction motor load with the 120-degree modulation technique for controlling each inverter. In this paper, the discontinuous space vector modulation (DSVM) schemes are proposed and applied for the dual two-level VSI fed open-end load. It is based on the 120-degree modulation technique by using only 12 active voltage vectors and the 10 zero voltage vectors from the total 64 voltage vectors along with the different five-segment swicthing sequence designs with centralizing pulse width modulation technqiue in order to not only cancel the CMV in the ac load, but also reduce the switching number/switching loss of the conversion system. Among the various DSVM schemes, their performances are compared in this paper, such as the number of the switching, the step and peak value of the CMV in each inverter, and the quality of the output waveform, etc. The details of the verfication and comparison are carried out by simulation using Matlab/Simulink software.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 466
Author(s):  
Pawel Szczepankowski ◽  
Natalia Strzelecka ◽  
Enrique Romero-Cadaval

This article presents three variants of the Pulse Width Modulation (PWM) for the Double Square Multiphase type Conventional Matrix Converters (DSM-CMC) supplying loads with the open-end winding. The first variant of PWM offers the ability to obtain zero value of the common-mode voltage at the load’s terminals and applies only six switches within the modulation period. The second proposal archives for less Total Harmonic Distortion (THD) of the generated load voltage. The third variant of modulation concerns maximizing the voltage transfer ratio, minimizing the number of switching, and the common-mode voltage cancellation. The discussed modulations are based on the concept of sinusoidal voltage quadrature signals, which can be an effective alternative to the classic space-vector approach. In the proposed approach, the geometrical arrangement of basic vectors needed to synthesize output voltages is built from the less number of vectors, which is equal to the number of the matrix converter’s terminals. The PWM duty cycle computation is performed using only a second-order determinant of the voltages coordinate matrix without using trigonometric functions. A new approach to the PWM duty cycles computing and the load voltage synthesis by 5 × 5 and 12 × 12 topologies has been verified using the PSIM simulation software.


Author(s):  
Mohammad Jafar Zandzadeh ◽  
Mohsen Saniei ◽  
Reza Kianinezhad

Purpose This paper aims to present a modified space vector pulse width modulation (SVPWM) technique for six-phase induction motor drive based on common-mode voltage (CMV) and current losses which are two important issues affecting drive system behavior and quality. Design/methodology/approach It is shown that the presence of z-component currents and the presence of CMV in six-phase drive system are two major limiting factors in space vector selection. The behavior of several space vector selections in a two-level inverter considering minimum CMV and z-components is investigated. Then, the space vectors in a three-level inverter is analyzed and tried to explore an SVM technique with better behavior. Findings The analyses show that all the problems cannot be solved in a six-phase drive system with two-level inverter despite having 64 space vectors; this study tried to overcome the limitations by exploring space vectors in a three-level inverter. Originality/value The proposed pulse width modulation (PWM) strategy leads to minimum current distortion and undesired current components with zero CMV and modest torque ripple.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1607
Author(s):  
Chang-Hwan Park ◽  
In-Kyo Seo ◽  
Belete Belayneh Negesse ◽  
Jong-su Yoon ◽  
Jang-Mok Kim

Low level modular multilevel converter (MMC) is a promising candidate for medium voltage applications such as MVDC (medium voltage DC current) transmission and megawatt machine drives. Unlike high-level MMC using nearest level modulation (NLM), the low-level MMC using the pulse width modulation (PWM) or NLM + PWM is affected by a common mode voltage (CMV) due to a frequent change of a switching state. This CMV causes electromagnetic interference (EMI) noise, common mode current (CMC) and bearing current leading to a reduction in the efficiency and durability of the motor drive system. Therefore, this paper provides a mathematical analysis on how the switching state affects the CMV and proposes three software based CMV reduction algorithms for the low level MMC system. To reflect the characteristic of MMC modulation strategy for upper and lower reference voltage independently, two separate space vectors are used. Based on the analysis, three different CMV reduction algorithms (complete CMV reduction (CCR), DPWM CMV reduction (DCR) and partial CMV reduction (PCR)) are proposed using NLC + PWM modulation strategy. The performance of the proposed CMV reduction algorithms was verified by both simulation and experimental result.


2018 ◽  
Vol 33 (4) ◽  
pp. 3268-3275 ◽  
Author(s):  
Meng-Jiang Tsai ◽  
Hsin-Chih Chen ◽  
Meng-Ru Tsai ◽  
Yao-Bang Wang ◽  
Po-Tai Cheng

Author(s):  
Aleksey Vyacheslavovich Udovichenko ◽  
Sergey Viktorovich Brovanov ◽  
Evgeny Valerievich Grishanov ◽  
Svetlana Mikhailovna Stennikova

Power generation systems based on renewable energy sources are finding ever-widening applications and many researchers work on this problem. Many papers address the problem of transformerless structures, but few of them are aimed at conducting research on structures with multilevel converter topologies. In this paper a grid-tied transformerless PV-generation system based on a multilevel converter is discussed. There are common-mode leakage currents which act as a parasitic factor. It is also known that common-mode voltage is the main cause of the common-mode leakage current in grid-tied PV-generation systems. This paper considers the space vector pulse-width modulation (PWM) technique which is used to suppress or reduce common-mode leakage current. The proposed engineering solutions for a generation system based on the multilevel converter controlled with a pulse-width modulation technique are verified by experiment.


Sign in / Sign up

Export Citation Format

Share Document