scholarly journals Design of UWB Antenna for Human Body Communication

2021 ◽  
Vol 23 (06) ◽  
pp. 1279-1287
Author(s):  
N. Sheshaprasad ◽  
◽  
Aditi Rao ◽  
Bhoomika R ◽  
Eva D. Saglani ◽  
...  

A diamond-shaped patch antenna with slots for desirable return loss, gain, and bandwidth was designed to achieve the intended goal. ROGERS 5880 was chosen as the substrate material and the antenna was simulated using CST (Computer simulation Technology) software. The designed microstrip patch antenna has a bandwidth from 2.12 to 9.24 GHz. The proposed antenna was put on the human body and had a SAR value of 1.44 W/kg, which was determined to be within the acceptable limit of 1.6 W/kg. Hence, the antenna can be used for on-body communication which is not detrimental to the human body.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012051
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhi ◽  
Ahmed A. Naser

Abstract Antenna studies on various wireless communication systems have been carried out by many academics. In this research, the omnidirectional microstrip patch antenna (MPA) is proposed, manufactured, and tested. The operating bandwidth of the antenna is quite suitable for the different applications. The proposed antenna fabricated on the flame retardant (FR-4) substrate with a volume of 75.85 × 57.23 × 1.59 mm3. Computer simulation technology (CST) studio used to design and simulate. Experimental results show that the return loss (RL), bandwidth (BW), voltage standing wave ratio (VSWR) and input impedance (Zin ) are -25.26 dB, 61 MHz, 1.12 and 54.46 Ω, respectively. The antenna operates at 2.42 GHz (from 2.39 to 2.45 GHz), which has good performance in the Wi-Fi, Bluetooth, and ZigBee communications.


2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Muhammad Syafiq Noor Azizi ◽  
Azahari Salleh ◽  
Adib Othman ◽  
Najmiah Radiah Mohamad ◽  
Nor Azlan Aris ◽  
...  

In this paper, we study behavior of Ultra wideband antenna which is Rectangular Slotted Microstrip Patch Antenna. Then, the antenna operated in proximity of human arm model. Furthermore, the antenna is designed on a FR-4 substrate with dielectric constant of 4.3 and thickness 1.6 mm. This antenna simulated in CST Microwave Studio software. In order to test the antenna, an arm model was numerically modelled. The study shows properties and performances of antenna when it is placed in three situations which in free space, outside and inside of human arm model. The properties of UWB antenna in term of return loss, gain, directivity and radiation pattern in the three situations is simulated and discussed.


Author(s):  
Nayli Adriana Azhar ◽  
Norazizah Mohd Aripin ◽  
Goh Chin Hock ◽  
Nayla Ferdous ◽  
Saidatul Hamidah

Continuous partial discharge (PD) monitoring and early PD detection is important in making sure the necessary preventative measures can be taken accordingly. This paper proposed a T-shaped partial ground microstrip patch antenna that is able to detect PD signal within the UHF range. The antenna was designed and simulated using CST Microwave Studio. The antenna was then fabricated using FR4 substrate material and tested for reception test. The simulation results and the analysis from the fabricated antenna confirmed that the proposed antenna able to detect PD signal at UHF range (specifically at about 500 MHz) and fulfilled the design requirements in terms of the return loss, VSWR, bandwidth and gain. Reception test had confirmed that the proposed antenna was able to detect PD signals that are located at maximum distance, ranges from 37 cm to 70 cm (depending on the PD signal strength). The proposed antenna also had succesfully detected PD occurances at 300 MHz to 700 MHz. In conclusion, the proposed T-shaped partial ground microstrip patch antenna had been successfully designed and able to detect PD signal emitted in the UHF range.


2021 ◽  
Vol 23 (06) ◽  
pp. 1474-1488
Author(s):  
N. Sheshaprasad ◽  
◽  
S. B. Bhanu Prashanth ◽  

This paper reports the SAR analysis performed to study the effects of the human body on the radiation parameters of a microstrip patch antenna designed on a Roger RT5880 substrate with a relative permittivity of 2.2. The CST Microwave Studio suite environment was used for design simulations, and the antenna was fabricated using MITS electronics’ Eleven Lab antenna printing machine. The printed antenna was placed near the human body to assess its performance in terms of return loss, bandwidth, realized gain, directivity, efficiency, and SAR. The SAR observed in the vicinity of the human body is within the IEEE standard. The designed antenna is hence proposed to be suitable for Wireless Body Area Networks (WBANs) applications.


2018 ◽  
Vol 7 (4.1) ◽  
pp. 86
Author(s):  
Nayla Ferdous ◽  
Goh Chin Hock ◽  
Saidatul Hamidah A. Hamid ◽  
Mohamad Nazri Abdul Raman ◽  
Tiong Sieh Kiong ◽  
...  

The aim of this paper is to present a simulation and analysis of a rectangular microstrip patch antenna with three different structural modifications to reduce the size of the antenna. We have tried to decrease the size of the antenna by inducing three different shaped slits inside the patch of the antenna. All these models have been designed and analyzed using CST Microwave Studio software. For designing the antennas, Flame Retardant 4 (FR-4 lossy) has been used as the substrate material with a dielectric constant of Ԑr=4.3. The antenna works at the frequency of 2.4 GHz. Performance characteristics such as return loss S11 parameter<-10 dB, directivity, side lobe level, gain and bandwidth of each of the modified designs are obtained and compared with the original design. We were able to reduce the size by maximum 18% and minimum 7% by only inducing the slits, while maintain the performance. 


Author(s):  
Kinde Anlay Fante ◽  
Mulugeta Tegegn Gemeda

In this paper, a 28 GHz broadband microstrip patch antenna (MSPA) for 5G wireless applications is presented. The Rogers RT/Duroid5880 substrate material, with a dielectric constant of 2.2, the thickness of 0.3451 mm, and loss tangent of 0.0009, is used for the studied antenna to operate at 28 GHz center frequency. The proposed design of antenna is simulated by using CST studio suite. The simulation results highlight that the studied antenna has a return loss of -54.49 dB, a bandwidth of 1.062 GHz, a gain of 7.554 dBi. Besides, radiation efficiency and the sidelobe level of the proposed MSPA are 98% and 18.4 dB, respectively. As compared to previous MSPA designs reported in the recent scientific literature, the proposed rectangular MSPA has achieved significantly improved performance in terms of the bandwidth, beam-gain, return loss, sidelobe level, and radiation efficiency. Hence, it is a potential contender antenna type for emerging 5G wireless communication applications.


Double Fibonacci spiral in a circle with microstrip line feeding technique is designed in the frequency range from 0.1GHz to 6GHz. The antenna is designed and simulated in computer simulation technology microwave studio software, substrate Fr-4 with thickness 1.59mm is used and antenna parameters such as return loss, surface current, E-field, H-field and gain are calculated for Double Fibonacci spiral microstrip patch (DFSM) antenna. The antenna is used for ISM (industrial, scientific and medical) frequency band (2.45GHz) and a new unutilized band for next generation services, gain is 2.22dB and 3.16dB and bandwidth is 25.94% and 22.83% on resonating frequencies.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012029
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhir ◽  
Ahmed A. Naser

Abstract For any wireless communication, the antenna plays a very important role. The request for this technology is reduced antenna size, weight, and cost with a low profile, high performance, and low return loss (RL). To meet these requirements, the microstrip patch antenna (MPA) can be used. This research represents the design and manufacture of the MPA for the 2.4 GHz applications with very low RL and perfect voltage standing wave ratio (VSWR). Computer simulation technology (CST) studio is used to design and simulation. The proposed MPA is fabricated on flame retardant (FR-4) material as a substrate. The results show that the MPA is capable to deal with RL of -38.86 dB at the frequency of 2.393 GHz with a bandwidth (BW) of 58 MHz and VSWR of 1.02. The volume of the antenna is 75.85 × 57.23 × 1.6 mm 3.


2019 ◽  
Vol 2 (3) ◽  
pp. 711-719
Author(s):  
Abdurrahim Erat

This paper presents the design and simulation of a microstrip patch antenna (MPA) which is modeled by placing several rectangular copper layer with conductive characteristics on a substrate material with dielectric constant 3.0 and 22x18x1 mm3 geometry. This microstrip path was designed with copper material which had a very thin thickness for patch and ground. In this study, a change in resonance frequency and return loss characteristics were observed for several substrate thickness values. The radiation characteristics of the single and dual band microstrip patch antennas (MPAs) are analysed in the frequency range of 5 &amp;ndash; 25 GHz. The microstrip patch antenna (MPA) radiate at a frequency of 15.32 GHz with -45 dB return loss. For the designed single and dual band MPA design, some electromagnetic properties such as return loss, surface current and radiation patterns were simulated. The characteristic of goods and chattels of the proposed antenna are analyzed by using the software CST Microwave Studio.


2015 ◽  
Vol 781 ◽  
pp. 116-119 ◽  
Author(s):  
S. Subahir ◽  
M.T. Ali ◽  
Nurulazlina A. Ramli ◽  
Siti Nurhidayah Kamaruddin ◽  
A.H. Awang ◽  
...  

This paper presents the development of a rectangular loop microstrip patch antenna integrated with Light Emitting Diode (LED) for Wifi application. The objective to integrate with LED is to have dual applications in a device which illumination and also wireless communication. The antenna was designed at a frequency of 2.4 GHz and Computer Simulation Technology (CST) was used to optimized the position of LED within the rectangular loop antenna. The performances of the antenna in terms of return loss, gain and radiation pattern was verified through simulation by using Microwave Studio in CST. The antenna was fabricated on FR4 substrate with permittivity, εr =4.5 and thickness,h= 1.6mm. The LED integrated within the patch was conducted parallel and was measured by Vector Network Analyser (VNA) to demonstrate the capacity and potential of the antenna. The antennas are reasonably well matched at their corresponding frequency of operations between simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document