scholarly journals Double Fibonacci Spiral Microstrip Patch Antenna for Dual Band Applications

Double Fibonacci spiral in a circle with microstrip line feeding technique is designed in the frequency range from 0.1GHz to 6GHz. The antenna is designed and simulated in computer simulation technology microwave studio software, substrate Fr-4 with thickness 1.59mm is used and antenna parameters such as return loss, surface current, E-field, H-field and gain are calculated for Double Fibonacci spiral microstrip patch (DFSM) antenna. The antenna is used for ISM (industrial, scientific and medical) frequency band (2.45GHz) and a new unutilized band for next generation services, gain is 2.22dB and 3.16dB and bandwidth is 25.94% and 22.83% on resonating frequencies.

2019 ◽  
Vol 2 (3) ◽  
pp. 711-719
Author(s):  
Abdurrahim Erat

This paper presents the design and simulation of a microstrip patch antenna (MPA) which is modeled by placing several rectangular copper layer with conductive characteristics on a substrate material with dielectric constant 3.0 and 22x18x1 mm3 geometry. This microstrip path was designed with copper material which had a very thin thickness for patch and ground. In this study, a change in resonance frequency and return loss characteristics were observed for several substrate thickness values. The radiation characteristics of the single and dual band microstrip patch antennas (MPAs) are analysed in the frequency range of 5 – 25 GHz. The microstrip patch antenna (MPA) radiate at a frequency of 15.32 GHz with -45 dB return loss. For the designed single and dual band MPA design, some electromagnetic properties such as return loss, surface current and radiation patterns were simulated. The characteristic of goods and chattels of the proposed antenna are analyzed by using the software CST Microwave Studio.


In recent study, in the growth of wireless technology single antenna that works with a specific frequency is becoming outdated. The antenna which is capable to work dynamically is encouraged. To make an antenna to work dynamically, modification in any of the antenna characteristics can be applied. In this proposed work, the antenna which can reconfigure its frequency is designed and analyzed. Microstrip patch antenna is most popular printed type antenna which is suitable for diverse applications. The antenna design consists of three PIN diodes which are placed in different positions on the patch. Depending upon the switching state of PIN diode the antenna can operate in different frequency ranges. The frequency range obtained ranges from 1.38 GHz to 3.24 GHz. Return loss value, VSWR obtained is of optimum level. The various gain of antenna is obtained in simulation. The analysis of the antenna is done in ANSYS HFSS software.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012051
Author(s):  
Alaa M. Abdulhussein ◽  
Ali H. Khidhi ◽  
Ahmed A. Naser

Abstract Antenna studies on various wireless communication systems have been carried out by many academics. In this research, the omnidirectional microstrip patch antenna (MPA) is proposed, manufactured, and tested. The operating bandwidth of the antenna is quite suitable for the different applications. The proposed antenna fabricated on the flame retardant (FR-4) substrate with a volume of 75.85 × 57.23 × 1.59 mm3. Computer simulation technology (CST) studio used to design and simulate. Experimental results show that the return loss (RL), bandwidth (BW), voltage standing wave ratio (VSWR) and input impedance (Zin ) are -25.26 dB, 61 MHz, 1.12 and 54.46 Ω, respectively. The antenna operates at 2.42 GHz (from 2.39 to 2.45 GHz), which has good performance in the Wi-Fi, Bluetooth, and ZigBee communications.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2018 ◽  
Vol 7 (4) ◽  
pp. 587-592
Author(s):  
K. Thana Pakkiam ◽  
K. Baskaran ◽  
J. S. Mandeep

In this paper, a simple mail box design of a dual band microstrip patch antenna, is proposed, designed, fabricated and measured for wireless LAN communications. The proposed antenna is designed using the TLC 30 (TACONIC) substrate, with a relative permittivity of 4.3 and substrate height of 1.6mm. It is designed to operate at 2.44 GHz and 5. 30 GHz respectively. The proposed antenna is the size of 31mm x 34mm x1.6mm and is incited by a 50 Ω micro strip feed line. The characteristics of the antenna are designed and the performance of the modelled antenna is evaluated using CST Microwave Studio. The return loss, radiation patterns and peak antenna gain of 6.5 dBi for frequency 2.44 GHz and 6.2 dBi for 5.30 GHz is separately and successfully plotted. The fabricated prototype exhibits an agreement between the measured and simulated return loss.


2020 ◽  
Vol 16 ◽  
pp. 01-12
Author(s):  
Rabnawaz Sarmad Uqaili ◽  
Junaid Ahmed Uqaili ◽  
Sidrish Zahra ◽  
Faraz Bashir Soomro ◽  
Ali Akbar

This paper presents the design of a dual-band microstrip patch antenna for Wi-Fi that operates at 2.5 GHz and 5.8 GHz. The antenna contains a rectangular patch with two rectangular slots. The first slot is incorporated in the patch while the second slot is incorporated in the ground plane. The antenna is based on a microstrip fed rectangular patch printed on the FR-4 epoxy substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm with patch size 24 mm × 21 mm. The simulated result shows that the realized antenna successfully works on dual-band and subsequently achieves a bandwidth of 100 MHz and 200 MHz as well as the return loss about -29.9 dB and -15.16 dB for 2.5 GHz and 5.8 GHz respectively. A stable omnidirectional radiation pattern is observed in the operating frequency bands. The antenna meets the required specifications for 802.11 WLAN standards.


2021 ◽  
Vol 11 (03) ◽  
pp. 01-11
Author(s):  
Chaitali Mukta ◽  
Mahfujur Rahman ◽  
Abu Zafor Md. Touhidul Islam

This paper presents the design of a compact circular microstrip patch antenna for WLAN applications which covers the band 5.15 to 5.825 GHz. The antenna is designed using 1.4mm thick FR-4 (lossy)substrate with relative permittivity 4.4 and a microstrip line feed is used. The radius of the circular patch is chosen as 7.62mm. To reduce the size and enhance the performance of the proposed antenna, a circular slot is loaded on circular patch and a square slot is etched on the ground plane of dimension 30mm×30mm. Design of the antenna is carried out using CST Microsoft Studio Sonimulation Software. The proposed antenna resonates at 5.5 GHz with a wider bandwidth of 702 MHz and it provides low return loss of -31.58 dB, good gain of 3.23 dB and directivity of 4.28 dBi and high efficiency of around 79% against the resonance frequency. The geometry of the proposed circular antenna with reduced size and its various performance parameters such as return loss, bandwidth, VSWR, gain, directivity, efficiency and radiation pattern plots are presented and discussed


2021 ◽  
Author(s):  
Suganthi Santhanam ◽  
Thiruvalar Selvan Palavesam

Abstract This paper presents the design of flexible trapezoidal radiating patch antenna array with FR4 substrate for onbody low frequency medical applications. The array resonates at 1.89 GHz with impedance bandwidth of 80 MHz and low return loss of -26.19 dB. The VSWR of 1.103 validate the activeness of the proposed antenna array having maximum surface current 133.1 (A/m) and directivity of 4.48 dBi. The antenna array exhibit the H-Field strength of 160.52 (A/m) and E-Field of 36093.4 (V/m) prove the radiation capability at low frequency on body application. These properties demonstrate the suitability of proposed array antenna for on body medical wireless applications.


Author(s):  
Sapna Kumari

Abstract: A dual-band, Square-shaped Microstrip Patch Antenna (SMPA) with two opposite corner cuts is proposed. The presented design is suitable for 4G/LTE and Wi-Fi applications as it resonates at 2.13GHz and 2.41GHz frequencies. The FR4 substrate with co-axial feed is used for fabrication and is simulated using CST software. The simulation result provides enhanced antenna specification of return loss (-42.64&-20.13) dB, bandwidth (62.7&89) MHz and percentage bandwidth (2.94&3.69) % than the conventional antenna prototype. Furthermore, a comparative study of simulated and experimental findings is analyzed in this manuscript. Keywords: Dual-band, return Loss, Bandwidth, Percentage Bandwidth, 4G/LTE, Wi-Fi


2021 ◽  
Vol 23 (06) ◽  
pp. 1279-1287
Author(s):  
N. Sheshaprasad ◽  
◽  
Aditi Rao ◽  
Bhoomika R ◽  
Eva D. Saglani ◽  
...  

A diamond-shaped patch antenna with slots for desirable return loss, gain, and bandwidth was designed to achieve the intended goal. ROGERS 5880 was chosen as the substrate material and the antenna was simulated using CST (Computer simulation Technology) software. The designed microstrip patch antenna has a bandwidth from 2.12 to 9.24 GHz. The proposed antenna was put on the human body and had a SAR value of 1.44 W/kg, which was determined to be within the acceptable limit of 1.6 W/kg. Hence, the antenna can be used for on-body communication which is not detrimental to the human body.


Sign in / Sign up

Export Citation Format

Share Document