scholarly journals Failure Modes Of Cold Formed Steel Angle Sections

2021 ◽  
Vol 23 (09) ◽  
pp. 604-613
Author(s):  
Dr.A. Paulmakesh ◽  
◽  
Gizachew Markos Makebo ◽  

Tension members consisting of single and double angles, single channels and similar sections are frequently used for lateral bracing and as truss elements. Such members normally have eccentric connections which results in bending of tension member. It is often permitted, by current design specifications, to neglect this eccentricity in the design of the member. The present study is focus on mode of failure on cold formed steel angle. This analysis carries single angles and double angles sections of 2mm under plain (without Lipped) and with Lipped conditions subjected to tension. Analyses were carried out for thirty-six numbers of angle sections under condition such as double angle were connected same side to gusset plate and connected to opposite side. Figure shows connection failure and mode of failure. Local buckling, global buckling, tearing failure, net section failure, and block shear failure.

2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


2012 ◽  
Vol 568 ◽  
pp. 125-128
Author(s):  
Yu Zhuo Jia ◽  
Li Zhao

In the multiple-circuit on same tower UHV and large crossing transmission tower,The main material of towers usually using a composite section in the form of the dual-angle and four steel angle. Dual-angle and four steel angle connections are inevitable. 500KV Jianbi - Danfeng four circuit transmission line project for the background, Using the finite element software ANSYS10.0, Composite Joints three-dimensional nonlinear finite element simulation. Clear the path of force transferor the node, Mechanical behavior of gusset plate and node failure modes. The results show that: node failure modes for the strength failure, The ultimate bearing capacity of the node is about three times the load of the node design, Node design is relatively conservative, By reducing the thickness of the gusset plate to lower node weight.


2018 ◽  
Vol 154 ◽  
pp. 01112
Author(s):  
Sabril Haris ◽  
Hazmal Herman ◽  
Zaidir ◽  
Rendy Thamrin

This paper presents an experimental study of bolt connection behaviour of the cold-formed steel joint. A 5-mm bolt was used to combine two channel sections. The size of channel section was 75 mm height, 35 mm width and 0.75 mm thickness. Tension test was conducted to obtain material characteristics of the channel section. Two type of connections were observed: Connection Type-1 that back-to-back channel sections were joined on their web directly, and Connection Type-2 that two channel sections were joined on their flanges through a same-size channel connector. The specimen was pulled by an increasing monotonically load. It was found that ultimate condition of the joint occurred when the bolt was split due to shear failure and the bolt was rotated because the hole size increased; these two failure modes are covered in the Indonesian and Australian/New Zealand cold-formed steel codes. The ultimate loads from the test were compared to analytical calculations using the formulae provided in the codes. The analytical calculation predicted the resistances conservatively within the range of 4 – 22 %.


2013 ◽  
Vol 432 ◽  
pp. 210-214
Author(s):  
Jong Wan Hu ◽  
Hee Myung Jang

This study is mainly intended to examine gusset plate described on the basis of the load resistance factored design (LRFD) method. The determination of design based on the full plastic strength of gusset plate in accordance with the current AASHTO Specifications. The I-40 bridge gusset plates considered herein were designed in accordance with the previous allowable stress design (ASD) method. Therefore, new design methodology will be applied to this gusset plate bridge in this study suggested by new LRFD method. The design strength models to evaluate resistance strength against available failure modes such as tension yielding and block shear rupture are presented. In addition, detailed equations are described with step-by-step procedures. Finally, the rating factor between resistance strength and applied loading, which indicates life safety, will be presented according to available failure modes.


2018 ◽  
Vol 22 (1) ◽  
pp. 172-186 ◽  
Author(s):  
M Adil Dar ◽  
N Subramanian ◽  
A R Dar ◽  
M Anbarasu ◽  
James BP Lim ◽  
...  

To address the various instability problems in cold-formed steel members, many researchers have mainly focused on developing innovative sectional profiles wherein geometry of the section plays a vital role in enhancing the inherent resistance of such sections against premature buckling. However, the process of forming such innovative shapes is not only complex and time-consuming but sometimes such sections fail to mobilize their complete reserve strength. Hence, a stiffening arrangement of weaker zones for mobilizing the untapped reserve strength is suggested. The contribution of this simple, effective and partly stiffening arrangements, aimed at eliminating/delaying the premature local buckling, is studied both experimentally and numerically and also compared with existing codes. Experimental study was carried out on different simply supported cold-formed steel beams with judiciously proposed stiffening arrangements under four-point loading. An equivalent hot-rolled steel beam was also tested to compare the efficiency of the cold-formed steel beams. The cold-formed steel beams investigated had different width-to-thickness ratio, different geometries and different stiffening arrangements. The test strengths, failure modes, deformed shapes, load versus mid-span displacements and geometric imperfections were measured and reported. The test strengths of the beam models are also compared with the design strength predicted by North American Standards and Eurocode for cold-formed steel structures. To validate the test results further, a numerical study was carried out on such stiffened cold-formed steel beams using finite element software ABAQUS. All these results show that the proposed strengthening system is efficient and economical and allow cold-formed steel beams to reach greater load carrying capacity.


2013 ◽  
Vol 22 (1-2) ◽  
pp. 73-80 ◽  
Author(s):  
Evaristo Figueroa ◽  
Basir Shafiq

AbstractA test program designed and carried out to mimic the repeated impact of the bow section of fast-moving small boats on the ocean surface provided some unique observations in terms of failure mode transition. Damage progression and modes of failure were evaluated for two types of sandwich composites with comparable global strength and stiffness but different foam density and facesheet strength. Testing was performed on flat rectangular specimens that contained symmetric semi-elliptical edge flaws produced near the end of the specimen held by the rotating cam. Type 1 specimens (softer core/stronger facesheet) consistently failed by interface and through-the-thickness core shear, independent of the flaw size. In contrast, a gradual decrease in flaw size in Type 2 specimens (denser core/weaker facesheet) produced a striking transition in the mode of failure from local buckling in the vicinity of the flaw site along with exponentially increasing lifetime, to interface shear failure at the free end accompanied by a dramatic drop in lifetime. The lifetime of Type 2 specimens was more than two orders of magnitude greater than that of Type 1 specimens.


2011 ◽  
Vol 243-249 ◽  
pp. 1435-1438 ◽  
Author(s):  
Ming Chen ◽  
Yang Sun ◽  
Bing Qian Pi

The double C steel section is made of two C steels with gusset plate through bolts. A ridge joint of double C steel is studied through experiment under cyclic loading in this paper. Through the four specimens with different gusset-plate’s thickness and bolt spacing, we analyze the effect of the gusset-plate’s thickness and bolt spacing on stiffness, ductility and energy performance. At last we recommend the suitable gusset-plate’s thickness. The results can give a reference to the engineering application of cold-formed steel structure.


1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


Author(s):  
Dongqi Jiang ◽  
Shanquan Liu ◽  
Tao Chen ◽  
Gang Bi

<p>Reinforced concrete – steel plate composite shear walls (RCSPSW) have attracted great interests in the construction of tall buildings. From the perspective of life-cycle maintenance, the failure mode recognition is critical in determining the post-earthquake recovery strategies. This paper presents a comprehensive study on a wide range of existing experimental tests and develops a unique library of 17 parameters that affects RCSPSW’s failure modes. A total of 127 specimens are compiled and three types of failure modes are considered: flexure, shear and flexure-shear failure modes. Various machine learning (ML) techniques such as decision trees, random forests (RF), <i>K</i>-nearest neighbours and artificial neural network (ANN) are adopted to identify the failure mode of RCSPSW. RF and ANN algorithm show superior performance as compared to other ML approaches. In Particular, ANN model with one hidden layer and 10 neurons is sufficient for failure mode recognition of RCSPSW.</p>


Sign in / Sign up

Export Citation Format

Share Document