scholarly journals Flare Gas Recovery from an Existing Oil Plant using Gas Compressors

2022 ◽  
Vol 24 (1) ◽  
pp. 61-71
Author(s):  
Walaa Mahmoud Shehata ◽  
◽  
Fatma Khalifa Gad ◽  
Mohamed Galal Helal ◽  

Global warming is nowadays one of the main and important issues. As the increase in the concentration of carbon dioxide and other greenhouse gases in the atmosphere as a result of the combustion of these gases causes such phenomena. Therefore, oil and gas plants need to be constantly reviewed over time to maintain high performance and operability, especially while changing feed composition and rate to meet standard product specifications. The aim of this study is to study the effect of flare gases recovery using gas compressors on the economic and environmental performance of an existing oilfield plant. A commercial simulation program aspen HYSYS Version 11 was used. The Kalabsha Central Processing Facility (KCPF) in the Western Desert of Egypt is the studied plant. This plant handles 30 million standard cubic feet per day (MMSCFD) from free water knock out drum and 1.6 MMSCFD of gases from heaters. 20 MMSCFD from gas is charged to the gas pipeline and 10 MMSCFD is sent to the flare with the 1.6 MMSCFD. It is proposed to install gas compressors to capture the gases from the free water knock out drum and heaters before sending them to the flare. Such technology can be used as a guide in upgrading existing and new oil and gas plants to reduce gas flaring. In addition, environmental protection also adds more economic profits from burning the recovered gas besides increasing the life of the flare equipment.

Author(s):  
Stefan Boodoo ◽  
Ajay Joshi

Oil and Gas companies keep exploring every new possible method to increase the likelihood of finding a commercial hydrocarbon bearing prospect. Well logging generates gigabytes of data from various probes and sensors. After processing, a prospective reservoir will indicate areas of oil, gas, water and reservoir rock. Incorporating High Performance Computing (HPC) methodologies will allow for thousands of potential wells to be indicative of its hydrocarbon bearing potential. This study will present the use of the Graphics Processing Unit (GPU) computing as another method of analyzing probable reserves. Raw well log data from the Kansas Geological Society (1999-2018) forms the basis of the data analysis. Parallel algorithms are developed and make use of Nvidia’s Compute Unified Device Architecture (CUDA). The results gathered highlight a 5 times speedup using a Nvidia GeForce GT 330M GPU as compared to an Intel Core i7 740QM Central Processing Unit (CPU). The processed results display depth wise areas of shale and rock formations as well as water, oil and/or gas reserves.


2021 ◽  
Author(s):  
Muhamad Sahir Ahmad Shatiry ◽  
Zulhizzan Ishak ◽  
Halizah Kader Ibrahim ◽  
Thahir Sk A Aziz ◽  
M Gaberalla Mohamed ◽  
...  

ABSTRACT Brownfield oil and gas (O&G) project defines as a project involving upgrading or rejuvenating existing facilities to cater to production enhancement, extend production profile, and install new equipment or tie-in with new greenfield platform. This abstract serves to share the replicable solution on brownfield project management for Commissioning and Start-up (CSU) strategy for Offshore Field Rejuvenation and Redevelopment Project. Field A and Field B are two fields in the Baram Delta Operation (BDO) in Malaysian Waters. Field A and B were first discovered and started its production in the early 1970s, putting the existing facilities’ current service life at an average of 40 years. Field B is within the Baram Delta in the South China Sea, about 40km from Miri, Sarawak. Field B plan for Brownfield Project is rejuvenation and redevelopment scopes to cater to the upcoming new installation of 3 wellhead platforms (WHPs) and one Central Processing Platform (CPP). The redevelopment project aim is to install new topside facilities to revive and upgrade platforms in Field B. The new facilities installed on the platform are new knock out drum, flare boom, Diesel Engine Generator (DEG), Gas Engine Generator (GEG), Diesel Tank, Sump Tank, HP Flare Knock up Drum Pump, and Instrument Air Package. This project is also part of the Enhanced Oil Recovery (EOR) project to increase overall Field A & B production from 60kbpd to 120kbpd total liquids.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Miguel Ladero

Energy policies in the US and in the EU during the last decades have been focused on enhanced oil and gas recovery, including the so-called tertiary extraction or enhanced oil recovery (EOR), on one hand, and the development and implementation of renewable energy vectors, on the other, including biofuels as bioethanol (mainly in US and Brazil) and biodiesel (mainly in the EU) [...]


2021 ◽  
Author(s):  
Rune Vikane ◽  
Jon Tømmerås Selvik ◽  
Eirik Bjorheim Abrahamsen

Abstract The 2014 Wood Review is a report reviewing UK offshore oil and gas recovery and its regulation, led by Sir Ian Wood. The report identifies and addresses key challenges in the UK petroleum industry, among them the lack of a strong regulatory body and a decommissioning strategy. The UK petroleum industry is mature, and Norway may benefit from UK's experiences in decommissioning. The article investigates the applicability of the Wood Review recommendations for decommissioning in Norway. The analysis of the recommendations in the Wood Review is carried out by a SWOT-analysis of the general recommendations with a high potential impact on decommissioning as well as the five recommendations specific to decommissioning. The recommendations in the Wood Review were broadly accepted by UK authorities and formed the basis for numerous initiatives aimed at improving policies and practices in UK decommissioning. The key initiatives are presented to illustrate how the Wood Review recommendations has been interpreted. A summary of the key differences between the petroleum industries and the regulatory authorities in Norway and the UK is provided for background. Decommissioning in Norway face similar challenges to those identified in the Wood Review. The analysis indicates that several of the UK initiatives following the recommendations in the Wood Review has the potential of improving decommissioning in Norway. Differences in regulatory regimes between the regions may complicate the implementation of some of the initiatives following the Wood Review in Norway. In most cases only minor changes to regulations and/or practices are required. Recent UK initiatives with a high impact on decommissioning include increased focus on sharing of information and lessons learned, increased collaboration, the development of a decommissioning strategy, benchmarking of decommissioning cost estimates for all projects and the development and publishing of annual UK decommissioning cost estimates. There are indications that the Norwegian Petroleum Directorate (NPD) and the Norwegian Ministry of Petroleum and Energy (MPE) are falling behind their UK counterparts in key areas. Norway has limited experience with decommissioning, and scrupulous analysis of lessons learned in other regions is essential. Decommissioning of Norwegian offshore infrastructure is a major undertaking and even minor improvements may have a substantial impact on personnel risk, risk to the environment or the total decommissioning expenditure. The Norwegian regulatory regime has been an integral part of the Norwegian petroleum industry's success in previous decades, and changes to the regime require careful deliberation. The recent implementation of initiatives aimed at improving decommissioning regulations and practices in the UK represents a unique learning opportunity for Norwegian authorities. The analysis suggest that Norway may benefit from adopting some of the UK initiatives following the Wood Review recommendations.


2021 ◽  
Vol 3 ◽  
pp. 110-112
Author(s):  
A.I. Utarbaev ◽  
◽  
I.V. Dorovskikh ◽  
V.A. Bulatov ◽  
I.P. Valov ◽  
...  
Keyword(s):  

Author(s):  
Vincenzo Castorani ◽  
Paolo Cicconi ◽  
Michele Germani ◽  
Sergio Bondi ◽  
Maria Grazia Marronaro ◽  
...  

Modularization is a current issue in the context of plant design. A modular system aims to reduce lead time and cost in design phases. An oil & gas plant consists of many Engineered-To-Order solutions to be submitted and approved during the negotiation phase. In this context, design tools and methods are necessary to support the design life cycle from the conceptual study to the detailed project. The paper proposes an approach to optimize the design of modularized oil & gas plants with a focus on the related steel structures. A test case shows the configuration workflow applied to a modular steel structure of about 400 tons. The modularized layout has been optimized using genetic algorithms. A Knowledge Base has been described to support the configuration phase related to the conceptual design. Design rules and metrics have been formalized from the analysis of past solutions.


2013 ◽  
Vol 671-674 ◽  
pp. 3257-3260
Author(s):  
Wen Guo Ma ◽  
Ke Liang Wang ◽  
Ji Hong Zhang ◽  
Wen Xiang Wu ◽  
Jing Chun Wu ◽  
...  

In this paper, the reformation of education concepts is studied during the implementation of the excellent engineer training program process. By the practical experience of innovative engineer personnel training is done in the Enhance Oil Recovery course of teaching practice, the innovative engineer personnel training content and reformation of education concepts is studied. Multimedia Technology ways to enhancing the relationship of theory and practice teaching, strengthen understanding and problem-solving abilities of students on the Enhancing Oil and gas Recovery teaching. It will provide references for the excellent engineer training program process in the field of petroleum engineering university.


Sign in / Sign up

Export Citation Format

Share Document