A Framework to Support the Optimization of Modularized Oil and Gas Structures

Author(s):  
Vincenzo Castorani ◽  
Paolo Cicconi ◽  
Michele Germani ◽  
Sergio Bondi ◽  
Maria Grazia Marronaro ◽  
...  

Modularization is a current issue in the context of plant design. A modular system aims to reduce lead time and cost in design phases. An oil & gas plant consists of many Engineered-To-Order solutions to be submitted and approved during the negotiation phase. In this context, design tools and methods are necessary to support the design life cycle from the conceptual study to the detailed project. The paper proposes an approach to optimize the design of modularized oil & gas plants with a focus on the related steel structures. A test case shows the configuration workflow applied to a modular steel structure of about 400 tons. The modularized layout has been optimized using genetic algorithms. A Knowledge Base has been described to support the configuration phase related to the conceptual design. Design rules and metrics have been formalized from the analysis of past solutions.

Designs ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 24
Author(s):  
Inês D. D. Campos ◽  
Luís F. A. Bernardo

This is the second of two companion articles which aim to address the research on architecture and steel. In the first article, some architectural projects were analyzed to show the potentiality to conjugate architectural conception and steel structures (in sight), as well as to show the contribution and influence from architectural history. As a result of the previous work, this second article discusses the development of an innovative prototype in steel structure, which constitutes a modular system applied for a single-family housing. In this prototype, steel is part of the design concept, not only as a structural element, but also as an aesthetic element. The needs of contemporary “living” are reinterpreted, considering all the changes and cultural influences due to globalization, compared with the living in Portuguese popular architecture, with its simplistic character and minimal spaces, and referring to a place. The proposed modular system, which is applied repeatedly, shows a huge potential for reorganizing, in a short period of time, urban areas with housing shortages in cases of emergency, while respecting population needs and providing construction quality. This Prototype Model, which combines the architectural concept with the lightweight character of steel structures, aims to provide an “other” way of “living”. It transmits “harmony” both in the experience of the interior space and in its relationship with the outer space, respecting the cultural references. In this study, the prototype is applied to popular Portuguese schist architecture, combining the basic structuring idea and the way how the project develops for the application of the conceptual and constructive process, thus relating two periods of architecture.


2011 ◽  
Vol 255-260 ◽  
pp. 2341-2344
Author(s):  
Mohammad Saeed Masoomi ◽  
Siti Aminah Osman ◽  
Ali Jahanshahi

This paper presents the performance of base-isolated steel structures under the seismic load. The main goals of this study are to evaluate the effectiveness of base isolation systems for steel structures against earthquake loads; to verify the modal analysis of steel frame compared with the hand calculation results; and development of a simulating method for base-isolated structure’s responses. Two models were considered in this study, one a steel structure with base-isolated and the other without base-isolated system. The nonlinear time-history analysis of both structures under El Centro 1940 seismic ground motion was used based on finite element method through SAP2000. The mentioned frames were analyzed by Eigenvalue method for linear analysis and Ritz-vector method for nonlinear analysis. Simulation results were presented as time-acceleration graphs for each story, period and frequency of both structures for the first three modes.


Author(s):  
Haigen Cheng ◽  
Cong Hu ◽  
Yong Jiang

AbstractThe steel structure under the action of alternating load for a long time is prone to fatigue failure and affects the safety of the engineering structure. For steel structures in complex environments such as corrosive media and fires, the remaining fatigue life is more difficult to predict theoretically. To this end, the article carried out fatigue tests on Q420qD high-performance steel cross joints under three different working conditions, established a 95% survival rate $$S{ - }N$$ S - N curves, and analyzed the effects of corrosive media and high fire temperatures on its fatigue performance. And refer to the current specifications to evaluate its fatigue performance. The results show that the fatigue performance of the cross joint connection is reduced under the influence of corrosive medium, and the fatigue performance of the cross joint connection is improved under the high temperature of fire. When the number of cycles is more than 200,000 times, the design curves of EN code, GBJ code, and GB code can better predict the fatigue life of cross joints without treatment, only corrosion treatment, and corrosion and fire treatment, and all have sufficient safety reserve.


2021 ◽  
Vol 13 (12) ◽  
pp. 2263
Author(s):  
Dongfeng Jia ◽  
Weiping Zhang ◽  
Yuhao Wang ◽  
Yanping Liu

As fundamental load-bearing parts, the cylindrical steel structures of transmission towers relate to the stability of the main structures in terms of topological relation and performance. Therefore, the periodic monitoring of a cylindrical steel structure is necessary to maintain the safety and stability of existing structures in energy transmission. Most studies on deformation analysis are still focused on the process of identifying discrepancies in the state of a structure by observing it at different times, yet relative deformation analysis based on the data acquired in single time has not been investigated effectively. In this study, the piecewise cylinder fitting method is presented to fit the point clouds collected at a single time to compute the relative inclination of a cylindrical steel structure. The standard deviation is adopted as a measure to evaluate the degree of structure deformation. Meanwhile, the inclination rate of each section is compared with the conventional method on the basis of the piecewise cylinder fitting parameters. The validity and accuracy of the algorithm are verified by real transmission tower point cloud data. Experimental results show that the piecewise cylinder fitting algorithm proposed in this research can meet the accuracy requirements of cylindrical steel structure deformation analysis and has high application value in the field of structure deformation monitoring.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Joachim Göttsche ◽  
Bernhard Hoffschmidt ◽  
Stefan Schmitz ◽  
Markus Sauerborn ◽  
Reiner Buck ◽  
...  

The cost of solar tower power plants is dominated by the heliostat field making up roughly 50% of investment costs. Classical heliostat design is dominated by mirrors brought into position by steel structures and drives that guarantee high accuracies under wind loads and thermal stress situations. A large fraction of costs is caused by the stiffness requirements of the steel structure, typically resulting in ∼20 kg/m2 steel per mirror area. The typical cost figure of heliostats (figure mentioned by Solucar at Solar Paces Conference, Seville, 2006) is currently in the area of 150 €/m2 caused by the increasing price of the necessary raw materials. An interesting option to reduce costs lies in a heliostat design where all moving parts are protected from wind loads. In this way, drives and mechanical layout may be kept less robust, thereby reducing material input and costs. In order to keep the heliostat at an appropriate size, small mirrors (around 10×10 cm2) have to be used, which are placed in a box with a transparent cover. Innovative drive systems are developed in order to obtain a cost-effective design. A 0.5×0.5 m2 demonstration unit will be constructed. Tests of the unit are carried out with a high-precision artificial sun unit that imitates the sun’s path with an accuracy of less than 0.5 mrad and creates a beam of parallel light with a divergence of less than 4 mrad.


Author(s):  
Naohiro Kusumi ◽  
David E. Goldberg ◽  
Noriyuki Ichinose

Power plant design using digital engineering based on 3-D computer-aided design has become a mainstream technology because of possessing higher speed and improvement in design accuracy. To take a coal-fired boiler building as an example, it has many complex structures with several million parts including the boiler itself, large fans, steel structures, and piping in varying sizes. Therefore, it is not easy to maintain integrity of the whole design throughout all the many engineering processes. We have developed a smart design system for coal-fired boiler buildings to solve the integrity problem. This system is capable of creating and allocating 3-D models automatically in accordance with various technical specifications and engineering rules. Lately, however, there has been a growing demand for more effectiveness of the developed system. We have begun to look into the feasibility of further improvements of the system function. The first point to note, when considering effectiveness, is the piping path routing process in the coal-fired boiler building. The quantity of piping is large, and it has a considerable impact on performance of the whole plant because hot steam is fed into the steam turbine and cold steam is taken from it through the piping. A considerable number of studies have been made on automatic searching methods of piping path routing. Although, the decision of piping path routing by using the Dynamic Programming method is most commonly, a previously decided routing becomes an interference object because of the single searching method. Therefore, basically, the later the order of the routing becomes, the longer the length of the routing becomes. To overcome this problem, in this paper we have proposed a new searching method based on the Genetic Algorithm (GA). The GA is a multipoint searching algorithm based on the mechanics of natural selection and natural genetics. Virtual prohibited cells are introduced into the proposed search method as a new idea. The virtual prohibited cells are located in a search space. The different paths are generated by avoiding the virtual prohibited cells while searching for the piping path routing. The optimum locations of the prohibited cells which are expressed in a genotype are obtained by using the GA in order to get a lot of paths independent of the order of the routing. The proposed method was evaluated using a simple searching problem. The results showed that many effective paths are generated by making the virtual prohibited cells.


Author(s):  
A. Romei ◽  
R. Maffulli ◽  
C. Garcia Sanchez ◽  
S. Lavagnoli

The use of multi-stage centrifugal compressors carries out a leading role in oil and gas process applications. Green operation and market competitiveness require the use of low-cost reliable compression units with high efficiencies and wide operating range. A methodology is presented for the design optimization of multi-stage centrifugal compressors with prediction of the compressor map and estimation of the uncertainty limits. A one-dimensional (1D) design tool has been developed that automatically generates a multi-stage radial compressor satisfying the target machine requirements based on a few input parameters. The compressor performance map is then assessed using the method proposed by Casey-Robinson [1], and the approach developed by Al-Busaidi-Pilidis [2]. The off-design performance method relies on empirical correlations calibrated on the performance maps of many single-stage centrifugal compressors. An uncertainty quantification study on the predicted performance maps was conducted using Monte Carlo method (MCM) and generalized Polynomial Chaos Expansion (gPCE). Finally, the design procedure has been coupled to an in-house optimizer based on evolutionary algorithms. The complete design procedure has been applied to a multi-stage industrial compressor test case. A multi-objective optimization of a multi-stage industrial compressor has been performed targeting maximum compressor efficiency and flow range. The results of the optimization show the existence of optimum compressor architectures and how the Pareto fronts evolve depending on the number of stages and shafts.


Abstract. A steel structure is naturally lighter than a comparable concrete construction because of the higher strength and firmness of steel. Nowadays, the growth of steel structures in India is enormous. There are so many advantages in adopting the steel as structural members. Almost all high-rise buildings, warehouses & go-downs are steel structures and even some of the commercial buildings are made of steel. Tension members are the elements that are subjected to direct axial load which tends in the elongation of the structural members. Even today bolted connections play a major role in the connection of hot rolled structural steel members. In this experimental study the behavior of tension members (TM) such as plates, angles & channels have been studied under axial tensile force. There is strong relation between pitch and gauge (with in the specified limit as per IS 800:2007) in determining the rupture failure plane. In this study we intensively tested the behaviour of TM for different fasteners pattern by changing the pitch, gauge, end & edge distance and by adopting the different patterns or arrangements of bolted connection in it.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xibing Hu ◽  
Rui Chen ◽  
Yuxuan Xiang ◽  
Yafang Chen ◽  
Qingshan Li

Steel structures are usually damaged by disasters. According to the influence law of the damage on the elastic modulus of steel obtained by the mechanical test of damaged steel, the average elastic moduli of H-section steel members were analyzed. The equations for calculating the average elastic moduli of damaged H-section steel members at different damage degrees were obtained. By using the analytical cross-sectional method, the cross-sectional M-Φ-P relationships and the dimensionless parameter equations of the H-sections in the full-sectional elastic distribution, single-sided plastic distribution, and double-sided plastic distribution were derived. On the basis of the cross-sectional M-Φ-P relationships and dimensionless parameters of actual steel members, the approximate calculation equations for the damaged cross sections were obtained. The Newmark method was used to analyze the deformation of damaged steel columns. Analytical results show good agreement with the test results. The equations and methods proposed in this study have high computational accuracy, and these can be applied to the cross-sectional M-Φ-P relationships and deformation calculation of damaged steel members.


Sign in / Sign up

Export Citation Format

Share Document