Multiplier Effects of Successful Projects: Replicable Solutions of Betty Redevelopment CSU

2021 ◽  
Author(s):  
Muhamad Sahir Ahmad Shatiry ◽  
Zulhizzan Ishak ◽  
Halizah Kader Ibrahim ◽  
Thahir Sk A Aziz ◽  
M Gaberalla Mohamed ◽  
...  

ABSTRACT Brownfield oil and gas (O&G) project defines as a project involving upgrading or rejuvenating existing facilities to cater to production enhancement, extend production profile, and install new equipment or tie-in with new greenfield platform. This abstract serves to share the replicable solution on brownfield project management for Commissioning and Start-up (CSU) strategy for Offshore Field Rejuvenation and Redevelopment Project. Field A and Field B are two fields in the Baram Delta Operation (BDO) in Malaysian Waters. Field A and B were first discovered and started its production in the early 1970s, putting the existing facilities’ current service life at an average of 40 years. Field B is within the Baram Delta in the South China Sea, about 40km from Miri, Sarawak. Field B plan for Brownfield Project is rejuvenation and redevelopment scopes to cater to the upcoming new installation of 3 wellhead platforms (WHPs) and one Central Processing Platform (CPP). The redevelopment project aim is to install new topside facilities to revive and upgrade platforms in Field B. The new facilities installed on the platform are new knock out drum, flare boom, Diesel Engine Generator (DEG), Gas Engine Generator (GEG), Diesel Tank, Sump Tank, HP Flare Knock up Drum Pump, and Instrument Air Package. This project is also part of the Enhanced Oil Recovery (EOR) project to increase overall Field A & B production from 60kbpd to 120kbpd total liquids.

2014 ◽  
Vol 17 (3) ◽  
pp. 103-109
Author(s):  
Tung Son Pham ◽  
Lan Cao Mai

The aim of this paper is to find optimal solutions for flow assurance of oil and gas mixture in an undersea pipeline. This study is applied to 25 km pipeline from the Ca Ngu Vang oilfield to the central processing platform number 3 of the Bach Ho oilfield. From the conservation equations of mass, momentum and energy, together with the theoretical basis of the flow regime, fluid properties, as well as pipeline geometry and properties, two simulations with different flow rates were developed: 1) Slug tracking simulation to predict the formation of slugs: frequency, length and surge volumes. The simulation results helped to find optimal solutions for the reception capability of the slug catcher; 2) Thermal hydraulic simulation to predict the evolution of temperature and pressure in the pipeline in order to help choosing the suitable pour point depressant (PPD) chemicals.


2022 ◽  
Vol 24 (1) ◽  
pp. 61-71
Author(s):  
Walaa Mahmoud Shehata ◽  
◽  
Fatma Khalifa Gad ◽  
Mohamed Galal Helal ◽  

Global warming is nowadays one of the main and important issues. As the increase in the concentration of carbon dioxide and other greenhouse gases in the atmosphere as a result of the combustion of these gases causes such phenomena. Therefore, oil and gas plants need to be constantly reviewed over time to maintain high performance and operability, especially while changing feed composition and rate to meet standard product specifications. The aim of this study is to study the effect of flare gases recovery using gas compressors on the economic and environmental performance of an existing oilfield plant. A commercial simulation program aspen HYSYS Version 11 was used. The Kalabsha Central Processing Facility (KCPF) in the Western Desert of Egypt is the studied plant. This plant handles 30 million standard cubic feet per day (MMSCFD) from free water knock out drum and 1.6 MMSCFD of gases from heaters. 20 MMSCFD from gas is charged to the gas pipeline and 10 MMSCFD is sent to the flare with the 1.6 MMSCFD. It is proposed to install gas compressors to capture the gases from the free water knock out drum and heaters before sending them to the flare. Such technology can be used as a guide in upgrading existing and new oil and gas plants to reduce gas flaring. In addition, environmental protection also adds more economic profits from burning the recovered gas besides increasing the life of the flare equipment.


2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 103
Author(s):  
Miguel Ladero

Energy policies in the US and in the EU during the last decades have been focused on enhanced oil and gas recovery, including the so-called tertiary extraction or enhanced oil recovery (EOR), on one hand, and the development and implementation of renewable energy vectors, on the other, including biofuels as bioethanol (mainly in US and Brazil) and biodiesel (mainly in the EU) [...]


2014 ◽  
Vol 695 ◽  
pp. 499-502 ◽  
Author(s):  
Mohamad Faizul Mat Ali ◽  
Radzuan Junin ◽  
Nor Hidayah Md Aziz ◽  
Adibah Salleh

Malaysia oilfield especially in Malay basin has currently show sign of maturity phase which involving high water-cut and also pressure declining. In recent event, Malaysia through Petroliam Nasional Berhad (PETRONAS) will be first implemented an enhanced oil recovery (EOR) project at the Tapis oilfield and is scheduled to start operations in 2014. In this project, techniques utilizing water-alternating-gas (WAG) injection which is a type of gas flooding method in EOR are expected to improve oil recovery to the field. However, application of gas flooding in EOR process has a few flaws which including poor sweep efficiency due to high mobility ratio of oil and gas that promotes an early breakthrough. Therefore, a concept of carbonated water injection (CWI) in which utilizing CO2, has ability to dissolve in water prior to injection was applied. This study is carried out to assess the suitability of CWI to be implemented in improving oil recovery in simulated sandstone reservoir. A series of displacement test to investigate the range of recovery improvement at different CO2 concentrations was carried out with different recovery mode stages. Wettability alteration properties of CWI also become one of the focuses of the study. The outcome of this study has shown a promising result in recovered residual oil by alternating the wettability characteristic of porous media becomes more water-wet.


2021 ◽  
Vol 73 (01) ◽  
pp. 12-13
Author(s):  
Manas Pathak ◽  
Tonya Cosby ◽  
Robert K. Perrons

Artificial intelligence (AI) has captivated the imagination of science-fiction movie audiences for many years and has been used in the upstream oil and gas industry for more than a decade (Mohaghegh 2005, 2011). But few industries evolve more quickly than those from Silicon Valley, and it accordingly follows that the technology has grown and changed considerably since this discussion began. The oil and gas industry, therefore, is at a point where it would be prudent to take stock of what has been achieved with AI in the sector, to provide a sober assessment of what has delivered value and what has not among the myriad implementations made so far, and to figure out how best to leverage this technology in the future in light of these learnings. When one looks at the long arc of AI in the oil and gas industry, a few important truths emerge. First among these is the fact that not all AI is the same. There is a spectrum of technological sophistication. Hollywood and the media have always been fascinated by the idea of artificial superintelligence and general intelligence systems capable of mimicking the actions and behaviors of real people. Those kinds of systems would have the ability to learn, perceive, understand, and function in human-like ways (Joshi 2019). As alluring as these types of AI are, however, they bear little resemblance to what actually has been delivered to the upstream industry. Instead, we mostly have seen much less ambitious “narrow AI” applications that very capably handle a specific task, such as quickly digesting thousands of pages of historical reports (Kimbleton and Matson 2018), detecting potential failures in progressive cavity pumps (Jacobs 2018), predicting oil and gas exports (Windarto et al. 2017), offering improvements for reservoir models (Mohaghegh 2011), or estimating oil-recovery factors (Mahmoud et al. 2019). But let’s face it: As impressive and commendable as these applications have been, they fall far short of the ambitious vision of highly autonomous systems that are capable of thinking about things outside of the narrow range of tasks explicitly handed to them. What is more, many of these narrow AI applications have tended to be modified versions of fairly generic solutions that were originally designed for other industries and that were then usefully extended to the oil and gas industry with a modest amount of tailoring. In other words, relatively little AI has been occurring in a way that had the oil and gas sector in mind from the outset. The second important truth is that human judgment still matters. What some technology vendors have referred to as “augmented intelligence” (Kimbleton and Matson 2018), whereby AI supplements human judgment rather than sup-plants it, is not merely an alternative way of approaching AI; rather, it is coming into focus that this is probably the most sensible way forward for this technology.


2021 ◽  
Author(s):  
L. Hendraningrat

In low oil price environments, conducting affordable enhanced oil recovery (EOR) projects can be very challenging. One item of interest for successful future EOR should be in how produced fluids are treated and how to achieve cost-efficiency. Nanoflooding, is an emerging EOR technique, which has attracted deployment in recent years. Meanwhile, Indonesia continues to progress towards the national oil and gas production target of one million barrels per day by 2030. This paper presents the observation of opportunities and challenges of using nanoflooding to enable oil and gas production in Indonesia to achieve its desired targets. The study began by mapping the pain points in major oilfields in Indonesia. We observed and discussed the advantage and limitation of traditional mature EOR techniques, status, and ongoing application of EOR in Indonesia. Then, we briefly explained the main reasons why nanoflooding can be considered for future implementation in accelerating oil production in Indonesia, including a discussion about a successful pilot test. As an emerging EOR technique, nanoflooding can be considered as a cost-efficient technique. Silica-based nanofluid can be accessed in a cost-efficient manner and can be executed from an implementation standpoint considering surface facilities. The mechanism that is introduced can help to displace incremental oil more effectively since it can go inside pore throats due to the nano-size. We observed several recognized benefits and challenges to deploy nanoflooding in Indonesia. Based on this study, nanoflooding is very attractive and has potential to be implemented.


Sign in / Sign up

Export Citation Format

Share Document