scholarly journals A Novel Precursor in Preparation and Characterization of Nickel Oxide (NiO) and Cobalt Oxide (CO3O4) Nanoparticles (NPS) via Aqueous Chemical Growth (ACG) Techniques

2016 ◽  
Vol 2 (1) ◽  
pp. 01-07
Author(s):  
A. R Junejo ◽  
S. Memon ◽  
S.Pathan
Author(s):  
Rajan Lakra ◽  
Rahul Kumar ◽  
Dhirendra Nath Thatoi ◽  
Prasanta Kumar Sahoo ◽  
Ankur Soam

2018 ◽  
Vol 21 (4) ◽  
pp. 271-280 ◽  
Author(s):  
Mohammad A. Ghasemzadeh ◽  
Mohammad H. Abdollahi-Basir ◽  
Zahra Elyasi

Aim and Objective: The multi-component condensation of benzil, primary amines, ammonium acetate and various aldehydes was efficiently catalyzed using cobalt oxide nanoparticles under ultrasonic irradiation. This approach describes an effective and facile method for the synthesis of some novel 1,2,4,5-tetrasubstituted imidazole derivatives with several advantages such as high yields and short reaction times and reusability of the catalyst. Moreover, the prepared heterocyclic compounds showed high antibacterial activity against some pathogenic strains. Materials and Method: The facile and efficient approaches for the preparation of Co3O4 nanoparticles were carried out by one step method. The synthesized heterogeneous nanocatalyst was characterized by spectroscopic analysis including EDX, FE-SEM, VSM, XRD and FT-IR analysis. The as-synthesized cobalt oxide nanoparticles showed paramagnetic behaviour in magnetic field. In addition, the catalytic influence of the nanocatalyst was examined in the one-pot reaction of primary amines, benzil, ammonium acetate and diverse aromatic aldehydes under ultrasonic irradiation. All of the 1,2,4,5-tetrasubstituted imidazoles were investigated and checked with m.p., 1H NMR, 13C NMR and FT-IR spectroscopy techniques. The antibacterial properties of the heterocycles were evaluated in vitro by the disk diffusion against pathogenic strains such as Escherichia coli (EC), Bacillus subtillis (BS), Staphylococcus aureus (SA), Salmonellatyphi (ST) and Shigella dysentrae (SD) species. Results: In this research cobalt oxide nanostructure was used as a robust and green catalyst in the some novel imidazoles. The average particle size measured from the FE-SEM image is found to be 20-30 nm which confirmed to the obtained results from XRD pattern. Various electron-donating and electron-withdrawing aryl aldehydes were efficiently reacted in the presence of Co3O4 nanoparticles. The role of the catalyst as a Lewis acid is promoting the reactions with the increase in the electrophilicity of the carbonyl and double band groups. To investigate the reusability of the catalyst, the model study was repeated using recovered cobalt oxide nanoparticles. The results showed that the nanocatalyst could be reused for five times with a minimal loss of its activity. Conclusion: We have developed an efficient and environmentally friendly method for the synthesis of some tetrasubstituted imidazoles via three-component reaction of benzil, primary amines, ammonium acetate and various aldehydes using Co3O4 NPs. The present approach suggests different benefits such as: excellent yields, short reaction times, simple workup procedure and recyclability of the magnetic nanocatalyst. The prepared 1,2,4,5-tetrasubstituted imidazoles revealed high antibacterial activities and can be useful in many biomedical applications.


2020 ◽  
Author(s):  
S. Veeresh ◽  
H. Ganesh ◽  
Y. S. Nagaraj ◽  
M. Vandana ◽  
S. P. Ashokkumar ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 907
Author(s):  
Yury Koshtyal ◽  
Ilya Mitrofanov ◽  
Denis Nazarov ◽  
Oleg Medvedev ◽  
Artem Kim ◽  
...  

Nanostructured metal oxides (MOs) demonstrate good electrochemical properties and are regarded as promising anode materials for high-performance lithium-ion batteries (LIBs). The capacity of nickel-cobalt oxides-based materials is among the highest for binary transition metals oxide (TMOs). In the present paper, we report the investigation of Ni-Co-O (NCO) thin films obtained by atomic layer deposition (ALD) using nickel and cobalt metallocenes in a combination with oxygen plasma. The formation of NCO films with different ratios of Ni and Co was provided by ALD cycles leading to the formation of nickel oxide (a) and cobalt oxide (b) in one supercycle (linear combination of a and b cycles). The film thickness was set by the number of supercycles. The synthesized films had a uniform chemical composition over the depth with an admixture of metallic nickel and carbon up to 4 at.%. All samples were characterized by a single NixCo1-xO phase with a cubic face-centered lattice and a uniform density. The surface of the NCO films was uniform, with rare inclusions of nanoparticles 15–30 nm in diameter. The growth rates of all films on steel were higher than those on silicon substrates, and this difference increased with increasing cobalt concentration in the films. In this paper, we propose a method for processing cyclic voltammetry curves for revealing the influence of individual components (nickel oxide, cobalt oxide and solid electrolyte interface—SEI) on the electrochemical capacity. The initial capacity of NCO films was augmented with an increase of nickel oxide content.


2005 ◽  
Vol 101 (3-4) ◽  
pp. 241-247 ◽  
Author(s):  
Chen-Bin Wang ◽  
Guo-Yuan Gau ◽  
Shiue-Jiun Gau ◽  
Chih-Wei Tang ◽  
Jia-Lin Bi
Keyword(s):  

2016 ◽  
Vol 3 (1) ◽  
pp. 12-14
Author(s):  
Kalpanadevi K ◽  
Manimekalai R

Nickel oxide (NiO) nano-particles were produced via a simple microwave method from the Ni(OH)2 precursor, which was obtained by slow drop-wise addition of 0.1M sodium hydroxide to 0.1M nickel nitrate. The mixture was vigorously stirred until the pH reached 7.2. The mixture was then irradiated with microwave to deposit Ni(OH)2 at a better precipitation rate. Drying the precipitate at 320°C resulted in formation of NiO nanoparticles. High Resolution Transmission Electron Microscope (HRTEM), Scanning Electron Microscope (SEM) and X-ray diffraction (XRD), employed for the structural characterization of the as-prepared NiO nanoparticles, revealed their good crystallinity and high-purity. Microwave irradiation increased homogeneity and decreased the mean particle size of the produced NiO particles.


ChemInform ◽  
2010 ◽  
Vol 22 (13) ◽  
pp. no-no
Author(s):  
Y. OKAMOTO ◽  
K. NAGATA ◽  
T. ADACHI ◽  
T. IMANAKA ◽  
K. INAMURA ◽  
...  

Solar Energy ◽  
2000 ◽  
Vol 68 (4) ◽  
pp. 325-328 ◽  
Author(s):  
M Adsten ◽  
R Joerger ◽  
K Järrendahl ◽  
E Wäckelgård

Sign in / Sign up

Export Citation Format

Share Document