scholarly journals Big Data Analytics in Health Care: A Review Paper

Author(s):  
Maria Mohammad Yousef

The application of big data in health care is a fast-growing field, with many discoveries and methodologies published in the last five years. Big data refers to datasets that are not only big but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Moreover, medical data is one of the most growing data, as it is obtained from Electronic Health Records (EHRs) or patients themselves. Due to the rapid growth of such medical data, we need to provide suitable tools and techniques in order to handle and extract value and knowledge from these datasets to improve the quality of patient care and reduces healthcare costs. Furthermore, such value can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper presents an overview of big data content, sources, technologies, tools, and challenges in health care. It also intends to identify the strategies to overcome the challenges.

Author(s):  
M. Supriya ◽  
A.J. Deepa

This article describes how nowadays, the growth of big data in bio-medical and healthcare community services is increasing rapidly. The early detection of diseases and patient care are analyzed with the help of accurate analysis of medical data includes diagnosed patients' details. The analysis of accuracy rate is considerably reduced when the quality of medical data is unclear since every part of the body has unique characteristics of certain regional diseases that may suppress the prediction of diseases. This article reviews the detailed survey of different prediction methods developed for analyzing the accuracy rate of disease affected patients in 2015-2016 mainly focuses on choosing the efficient predictions based on the quality of medical data not only provides the overall view of prediction methods but also gives the idea of big data analytics in medical data further discusses the methods, techniques used and the pros and cons of prediction methods.


Author(s):  
M. Supriya ◽  
A.J. Deepa

This article describes how nowadays, the growth of big data in bio-medical and healthcare community services is increasing rapidly. The early detection of diseases and patient care are analyzed with the help of accurate analysis of medical data includes diagnosed patients' details. The analysis of accuracy rate is considerably reduced when the quality of medical data is unclear since every part of the body has unique characteristics of certain regional diseases that may suppress the prediction of diseases. This article reviews the detailed survey of different prediction methods developed for analyzing the accuracy rate of disease affected patients in 2015-2016 mainly focuses on choosing the efficient predictions based on the quality of medical data not only provides the overall view of prediction methods but also gives the idea of big data analytics in medical data further discusses the methods, techniques used and the pros and cons of prediction methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Ashwin Belle ◽  
Raghuram Thiagarajan ◽  
S. M. Reza Soroushmehr ◽  
Fatemeh Navidi ◽  
Daniel A. Beard ◽  
...  

The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajesh Kumar Singh ◽  
Saurabh Agrawal ◽  
Abhishek Sahu ◽  
Yigit Kazancoglu

PurposeThe proposed article is aimed at exploring the opportunities, challenges and possible outcomes of incorporating big data analytics (BDA) into health-care sector. The purpose of this study is to find the research gaps in the literature and to investigate the scope of incorporating new strategies in the health-care sector for increasing the efficiency of the system.Design/methodology/approachFora state-of-the-art literature review, a systematic literature review has been carried out to find out research gaps in the field of healthcare using big data (BD) applications. A detailed research methodology including material collection, descriptive analysis and categorization is utilized to carry out the literature review.FindingsBD analysis is rapidly being adopted in health-care sector for utilizing precious information available in terms of BD. However, it puts forth certain challenges that need to be focused upon. The article identifies and explains the challenges thoroughly.Research limitations/implicationsThe proposed study will provide useful guidance to the health-care sector professionals for managing health-care system. It will help academicians and physicians for evaluating, improving and benchmarking the health-care strategies through BDA in the health-care sector. One of the limitations of the study is that it is based on literature review and more in-depth studies may be carried out for the generalization of results.Originality/valueThere are certain effective tools available in the market today that are currently being used by both small and large businesses and corporations. One of them is BD, which may be very useful for health-care sector. A comprehensive literature review is carried out for research papers published between 1974 and 2021.


2019 ◽  
Vol 01 (02) ◽  
pp. 12-20 ◽  
Author(s):  
Smys S ◽  
Vijesh joe C

The big data includes the enormous flow of data from variety of applications that does not fit into the traditional data base. They deal with the storing, managing and manipulating of the data acquired from various sources at an alarming rate to gather valuable insights from it. The big data analytics is used provide with the new and better ideas that pave way to the improvising of the business strategies with its broader, deeper insights and frictionless actions that leads to an accurate and reliable systems. The paper proposes the big data analytics for the improving the strategic assets in the health care industry by providing with the better services for the patients, gaining the satisfaction of the patients and enhancing the customer relationship.


2018 ◽  
Vol 18 (03) ◽  
pp. e23 ◽  
Author(s):  
María José Basgall ◽  
Waldo Hasperué ◽  
Marcelo Naiouf ◽  
Alberto Fernández ◽  
Francisco Herrera

The volume of data in today's applications has meant a change in the way Machine Learning issues are addressed. Indeed, the Big Data scenario involves scalability constraints that can only be achieved through intelligent model design and the use of distributed technologies. In this context, solutions based on the Spark platform have established themselves as a de facto standard. In this contribution, we focus on a very important framework within Big Data Analytics, namely classification with imbalanced datasets. The main characteristic of this problem is that one of the classes is underrepresented, and therefore it is usually more complex to find a model that identifies it correctly. For this reason, it is common to apply preprocessing techniques such as oversampling to balance the distribution of examples in classes. In this work we present SMOTE-BD, a fully scalable preprocessing approach for imbalanced classification in Big Data. It is based on one of the most widespread preprocessing solutions for imbalanced classification, namely the SMOTE algorithm, which creates new synthetic instances according to the neighborhood of each example of the minority class. Our novel development is made to be independent of the number of partitions or processes created to achieve a higher degree of efficiency. Experiments conducted on different standard and Big Data datasets show the quality of the proposed design and implementation.


Sign in / Sign up

Export Citation Format

Share Document