scholarly journals Leveraging Big Data Analytics to Improve Quality of Care In Health Care: A fsQCA Approach

Author(s):  
Yichuan Wang
2019 ◽  
Vol 30 (2) ◽  
pp. 362-388 ◽  
Author(s):  
Yichuan Wang ◽  
LeeAnn Kung ◽  
Suraksha Gupta ◽  
Sena Ozdemir

Author(s):  
Navin Kumar

The amount of healthcare data continues to exponentially grow everyday. The complexity of this data further limits the analytical capabilities of traditional healthcare systems. With value-based care, it is far more imminent for healthcare organizations to control the costs and to improve the quality of care in order to sustain their business. The purpose of the chapter is to gain insights into complexities and challenges that exist in current healthcare systems and how big data analytics and IoT can play a pivotal role to positively influence the quality of care and patient outcomes. The chapter also provides solutions and strategies for building cloud-based data asset that can deliver rich data analytics to both the healthcare systems and the patients.


Author(s):  
Maria Mohammad Yousef

The application of big data in health care is a fast-growing field, with many discoveries and methodologies published in the last five years. Big data refers to datasets that are not only big but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Moreover, medical data is one of the most growing data, as it is obtained from Electronic Health Records (EHRs) or patients themselves. Due to the rapid growth of such medical data, we need to provide suitable tools and techniques in order to handle and extract value and knowledge from these datasets to improve the quality of patient care and reduces healthcare costs. Furthermore, such value can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper presents an overview of big data content, sources, technologies, tools, and challenges in health care. It also intends to identify the strategies to overcome the challenges.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajesh Kumar Singh ◽  
Saurabh Agrawal ◽  
Abhishek Sahu ◽  
Yigit Kazancoglu

PurposeThe proposed article is aimed at exploring the opportunities, challenges and possible outcomes of incorporating big data analytics (BDA) into health-care sector. The purpose of this study is to find the research gaps in the literature and to investigate the scope of incorporating new strategies in the health-care sector for increasing the efficiency of the system.Design/methodology/approachFora state-of-the-art literature review, a systematic literature review has been carried out to find out research gaps in the field of healthcare using big data (BD) applications. A detailed research methodology including material collection, descriptive analysis and categorization is utilized to carry out the literature review.FindingsBD analysis is rapidly being adopted in health-care sector for utilizing precious information available in terms of BD. However, it puts forth certain challenges that need to be focused upon. The article identifies and explains the challenges thoroughly.Research limitations/implicationsThe proposed study will provide useful guidance to the health-care sector professionals for managing health-care system. It will help academicians and physicians for evaluating, improving and benchmarking the health-care strategies through BDA in the health-care sector. One of the limitations of the study is that it is based on literature review and more in-depth studies may be carried out for the generalization of results.Originality/valueThere are certain effective tools available in the market today that are currently being used by both small and large businesses and corporations. One of them is BD, which may be very useful for health-care sector. A comprehensive literature review is carried out for research papers published between 1974 and 2021.


2019 ◽  
Vol 01 (02) ◽  
pp. 12-20 ◽  
Author(s):  
Smys S ◽  
Vijesh joe C

The big data includes the enormous flow of data from variety of applications that does not fit into the traditional data base. They deal with the storing, managing and manipulating of the data acquired from various sources at an alarming rate to gather valuable insights from it. The big data analytics is used provide with the new and better ideas that pave way to the improvising of the business strategies with its broader, deeper insights and frictionless actions that leads to an accurate and reliable systems. The paper proposes the big data analytics for the improving the strategic assets in the health care industry by providing with the better services for the patients, gaining the satisfaction of the patients and enhancing the customer relationship.


2018 ◽  
Vol 18 (03) ◽  
pp. e23 ◽  
Author(s):  
María José Basgall ◽  
Waldo Hasperué ◽  
Marcelo Naiouf ◽  
Alberto Fernández ◽  
Francisco Herrera

The volume of data in today's applications has meant a change in the way Machine Learning issues are addressed. Indeed, the Big Data scenario involves scalability constraints that can only be achieved through intelligent model design and the use of distributed technologies. In this context, solutions based on the Spark platform have established themselves as a de facto standard. In this contribution, we focus on a very important framework within Big Data Analytics, namely classification with imbalanced datasets. The main characteristic of this problem is that one of the classes is underrepresented, and therefore it is usually more complex to find a model that identifies it correctly. For this reason, it is common to apply preprocessing techniques such as oversampling to balance the distribution of examples in classes. In this work we present SMOTE-BD, a fully scalable preprocessing approach for imbalanced classification in Big Data. It is based on one of the most widespread preprocessing solutions for imbalanced classification, namely the SMOTE algorithm, which creates new synthetic instances according to the neighborhood of each example of the minority class. Our novel development is made to be independent of the number of partitions or processes created to achieve a higher degree of efficiency. Experiments conducted on different standard and Big Data datasets show the quality of the proposed design and implementation.


2020 ◽  
pp. 1839-1857
Author(s):  
Mamata Rath

Currently, there is an expanding interest for additional medical data from patients about their healthcare choices and related decisions, and they further need investment in their basic health issues. Big data provides patients presumptuous data to help them settle on the best choice and align with their medicinal treatment plan. One of the very advanced concepts related to the synthesis of big data sets to reveal the hidden pattern in them is big data analytics. It involves demanding techniques to mine and extract relevant data that includes the actions of piercing a database, effectively mine the data, query and inspect the data and is committed to enhance the technical execution of various task segments. The capacity to synthesize a lot of data can enable an association to manage data that can influence the business. In this way, the primary goal of big data analytics is to help business relationships to have enhanced comprehension of data, and subsequently, settle on proficient and very much educated decisions. Big data analytics empowers data diggers and researchers to examine an extensive volume of data that may not be outfit utilizing customary apparatuses. Big data analytics require advances and statistical instruments that can change a lot of organized, unstructured, and semi-organized data into more reasonable data and metadata designed for explanatory procedures. There is tremendous positive potential concerning the application of big data in human health care services and many related major applications are still in their developmental stages. The deployment of big data in health service demonstrates enhancing health care results and controlling the expenses of common people due to treatment, as proven by some developing use cases. Keeping in view such powerful processing capacity of big data analytics in various technical fields of modern civilization related to health care, the current research article presents a comprehensive study and investigation on big data analytics and its application in multiple sectors of society with significance in health care applications.


Author(s):  
Fenio Annansingh

The concept of a smart city as a means to enhance the life quality of citizens has been gaining increasing importance in recent years globally. A smart city consists of city infrastructure, which includes smart services, devices, and institutions. Every second, these components of the smart city infrastructure are generating data. The vast amount of data is called big data. This chapter explores the possibilities of using big data analytics to prevent cybersecurity threats in a smart city. It also analyzed how big data tools and concepts can solve cybersecurity challenges and detect and prevent attacks. Using interviews and an extensive review of the literature have developed the data analytics and cyber prevention model. The chapter concludes by indicating that big data analytics allow a smart city to identify and solve cybersecurity challenges quickly and efficiently.


Sign in / Sign up

Export Citation Format

Share Document