scholarly journals Intestinal microbiota and inflammatory bowel diseases

2021 ◽  
Vol 64 (9) ◽  
pp. 588-595
Author(s):  
Chang Soo Eun

Background: The prevalence of inflammatory bowel diseases (IBD) has been rapidly increasing over the past several decades in Korea. IBD appears to be resulted from inappropriate and chronic activation of the mucosal immune system driven by stimuli such as intestinal microbiota and various environmental factors in genetically susceptible individuals.Current Concepts: Recent advances in next-generation sequencing technology have identified alterations in the composition and function of the intestinal microbiota in individuals with IBD. Dysbiosis in patients with IBD is characterized by decreased bacterial diversity combined with an expansion of putative aggressive species and a reduction in protective species. Altered microbial composition and function in IBD correlates with increased immune stimulation, epithelial dysfunction, or enhanced mucosal permeability. Thus, dysbiosis may play an essential role in the pathogenesis of IBD.Discussion and Conclusion: Although it is currently unclear whether dysbiosis is a cause or consequence of intestinal inflammation in IBD, several microbial-based and microbial-targeted therapies have yielded promising early results.

2020 ◽  
Vol 26 (25) ◽  
pp. 2951-2961 ◽  
Author(s):  
Cristiana De Musis ◽  
Lucia Granata ◽  
Marcello Dallio ◽  
Agnese Miranda ◽  
Antonietta G. Gravina ◽  
...  

: Inflammatory bowel diseases (IBD) are chronic multifactorial diseases characterized by partially unclear pathogenic mechanisms including changes in intestinal microbiota. Despite the microbiota, alteration is well established in IBD patients, as reported by 16RNA sequencing analysis, an important goal is to define if it is just a consequence of the disease progression or a trigger factor of the disease itself. To date, gut microbiota composition and gut microbiota-related metabolites seem to affect the host healthy state both by modulating metabolic pathways or acting on the expression of different genes through epigenetic effects. Because of this, it has been suggested that intestinal microbiota might represent a promising therapeutic target for IBD patients. : The aim of this review is to summarize both the most recent acquisitions in the field of gut microbiota and its involvement in intestinal inflammation together with the available strategies for the modulation of microbiota, such as prebiotics and/or probiotics administration or fecal microbiota transplantation.


2014 ◽  
Vol 73 (4) ◽  
pp. 490-497 ◽  
Author(s):  
Kristin A. Verbeke ◽  
Leen Boesmans ◽  
Eef Boets

Crohn's disease (CD) and ulcerative colitis (UC) are the two major phenotypes of inflammatory bowel diseases (IBD) which constitute a spectrum of chronic, debilitating diseases characterised by a relapsing inflammation of the intestinal mucosal lining. Evidence from a variety of disciplines implicates the intestinal microbiota in the pathogenesis of idiopathic IBD and their complications, including pouchitis. Many studies have reported a dysbiosis in IBD, characterised by a decrease in diversity, a decreased abundance of some dominant commensal members (such asClostridiumIV and XIVa) and an increase in detrimental bacteria (such as sulphate reducing bacteria andEscherichia coli). Therapies such as prebiotics and probiotics aim to selectively manipulate the intestinal microbiota and have been evaluated as an attractive therapeutic option with few side effects. The multispecies product VSL#3 was found effective in preventing and maintaining remission in pouchitis, whereas both VSL#3 andE. coliNissle were effective in maintaining remission in UC. A more drastic approach to restore the composition of the microbiota and correct the underlying imbalance is a faecal microbiota transplantation (FMT). FMT has been successfully applied to treat patients with even recalcitrantClostridium difficileinfection. Particularly in UC, the majority of studies suggest that FMT may be an effective treatment option although the evidence is still limited. It is anticipated that our increasing knowledge on the composition and function of the intestinal microbiota components will allow in the future for a better selection of highly performing bacteria with specific functions required for specific benefits.


2015 ◽  
Vol 33 (Suppl. 1) ◽  
pp. 26-31
Author(s):  
Hans Herfarth ◽  
Andreas G. Schreyer

Diagnostic imaging techniques play an important role in the diagnosis and management of patients with inflammatory bowel diseases (IBDs). The approach should be guided by considerations of diagnostic accuracy, concerns about patient exposure to ionizing radiation, local expertise and tolerance of the endoscopic and/or imaging technique. In regard to the clinical diagnostic value (sensitivity, specificity and accuracy), no significant differences exist between CT and MRI for the evaluation of the extent of inflammation, stricturing, penetrating disease or extraluminal complications such as abscesses. Due to the absence of radiation exposure, MRI of the intestine is recommended as the first-line imaging modality in patients with suspected or established IBD. The focus of this review is the latest developments in MRI techniques to detect IBDs. Specifically, the use of new indices for the grading of inflammation or assessing bowel damage as well as innovative experimental approaches such as diffusion-weighted imaging or magnetization-transfer MRI to evaluate and quantify the degree of intestinal inflammation and fibrosis in stricturing Crohn's disease are discussed.


2021 ◽  
Author(s):  
Jiří Hrdý ◽  
Aurélie Couturier-Maillard ◽  
Denise Boutillier ◽  
Carmen Lapadatescu ◽  
Philippe Blanc ◽  
...  

Abstract Live biotherapeutic products constitute an emerging therapeutic approach to prevent or treat inflammatory bowel diseases. Lactobacillus acidophilus is a constituent of the human microbiota with probiotic potential, that are illustrated by direct and indirect antimicrobial activity against several pathogens and improvement of intestinal inflammation. In this study, we evaluated the anti-inflammatory properties of the L. acidophilus strain BIO5768 and assessed the underlying mechanisms of action. BIO5768 was able to counteract the acute colitis that is induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). When administered alone or in combination with Bifidobacterium animalis spp. lactis BIO5764 and Limosilactobacillus reuteri, BIO5768 was also able to alleviate intestinal inflammation induced by Citrobacter rodentium infection. Supplementation of naïve mice with either strain BIO5768 alone or as mixture, increased the gene expression of several target genes involved in immune signaling, including c-type lectin Reg3 gamma. Consistently, the ability of innate lymphoid cells to secrete IL-22 was enhanced in response to BIO5768. Interestingly, the aforementioned responses were shown to be independent of NOD2 and Th17 signaling in mice that were mono-colonized with BIO5768. In conclusion, we identify a new potential probiotic strain with the ability for the management of inflammatory bowel diseases, and provide some insights into its mode of action.


2020 ◽  
Vol 79 (4) ◽  
pp. 468-478 ◽  
Author(s):  
Stefania Del Fabbro ◽  
Philip C. Calder ◽  
Caroline E. Childs

The aim of the present paper is to review the effects of non-digestible oligosaccharides (NDO) on immunity, focusing on their microbiota-independent mechanisms of action, as well as to explore their potential beneficial role in inflammatory bowel diseases (IBD). IBD are chronic, inflammatory conditions of the gastrointestinal tract. Individuals with IBD have an aberrant immune response to commensal microbiota, resulting in extensive mucosal inflammation and increased intestinal permeability. NDO are prebiotic fibres well known for their role in supporting intestinal health through modulation of the gut microbiota. NDO reach the colon intact and are fermented by commensal bacteria, resulting in the production of SCFA with immunomodulatory properties. In disease states characterised by increased gut permeability, prebiotics may also bypass the gut barrier and directly interact with intestinal and systemic immune cells, as demonstrated in patients with IBD and in infants with an immature gut. In vitro models show that fructooligosaccharides, inulin and galactooligosaccharides exert microbiota-independent effects on immunity by binding to toll-like receptors on monocytes, macrophages and intestinal epithelial cells and by modulating cytokine production and immune cell maturation. Moreover, animal models and human supplementation studies demonstrate that some prebiotics, including inulin and lactulose, might reduce intestinal inflammation and IBD symptoms. Although there are convincing preliminary data to support NDO as immunomodulators in the management of IBD, their mechanisms of action are still unclear and larger standardised studies need to be performed using a wider range of prebiotics.


2019 ◽  
Vol 10 (2) ◽  
pp. 1132-1145 ◽  
Author(s):  
Meiling Liu ◽  
Xiuxia Zhang ◽  
Yunpeng Hao ◽  
Jinhua Ding ◽  
Jing Shen ◽  
...  

Multiple articles have confirmed that an imbalance of the intestinal microbiota is closely related to aberrant immune responses of the intestines and to the pathogenesis of inflammatory bowel diseases (IBDs).


Sign in / Sign up

Export Citation Format

Share Document