scholarly journals Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle

2010 ◽  
Vol 11 (4) ◽  
pp. 313-318 ◽  
Author(s):  
Soo-Jung Hwang ◽  
Seong-Wook Choi
Author(s):  
Youngshin Kang ◽  
Nakwan Kim ◽  
Byoung-Soo Kim ◽  
Min-Jea Tahk

Single hidden layer perceptron neural network controllers combined with dynamic inversion are applied to the tilt-rotor unmanned aerial vehicle and its variant model with the nacelle mounted wing extension. The bandwidths of the inner loop and outer loop of the controller are designed using the timescale separation approach, which uses the combined analysis of the two loops. The bandwidth of each loop is selected to be close to each other using a combination of the pseudo-control-hedging and the pole-placement method. Similar to the previous studies on sigma-pi neural network, the dynamic inversion at hover conditions of the original tilt-rotor model is used as a baseline for both aircraft, and the compatible solution to the Lyapunov equation is suggested. The single hidden layer perceptron neural network minimizes the error of the inversion model through the back-propagation adaptation. The waypoint guidance is applied to the outermost loop of the neural network controller for autonomous flight which includes vertical take-off and landing as well as nacelle conversion. The simulation results under the two wind conditions for the tilt-rotor aircraft and its variant are presented. The south and north-west wind directions are simulated in order to compare with the results from the existing sigma-pi neural network, and the estimation results of the wind are presented.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141667814 ◽  
Author(s):  
Chao Chen ◽  
Jiyang Zhang ◽  
Daibing Zhang ◽  
Lincheng Shen

Tilt-rotor unmanned aerial vehicles have attracted increasing attention due to their ability to perform vertical take-off and landing and their high-speed cruising abilities, thereby presenting broad application prospects. Considering portability and applications in tasks characterized by constrained or small scope areas, this article presents a compact tricopter configuration tilt-rotor unmanned aerial vehicle with full modes of flight from the rotor mode to the fixed-wing mode and vice versa. The unique multiple modes make the tilt-rotor unmanned aerial vehicle a multi-input multi-output, non-affine, multi-channel cross coupling, and nonlinear system. Considering these characteristics, a control allocation method is designed to make the controller adaptive to the full modes of flight. To reduce the cost, the accurate dynamic model of the tilt-rotor unmanned aerial vehicle is not obtained, so a full-mode flight strategy is designed in view of this situation. An autonomous flight test was conducted, and the results indicate the satisfactory performance of the control allocation method and flight strategy.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Dinc ◽  
Murat Otkur

Purpose The purpose of this study is to perform the preliminary design, flight performance and exhaust emissions calculations of a piston engine powered unmanned aerial vehicle (UAV) during a flight cycle which consists of multiple flight altitudes and airspeeds. Design/methodology/approach A genuine computer model in Matlab/Simulink was developed to predict the size and weight of UAV and piston engine (using Avgas 100LL fuel) performance together with exhaust emissions in an iterative process. Findings The amount of emitted exhaust gases including carbon dioxide, carbon monoxide, hydrocarbons and nitrogen oxides were calculated in a typical UAV mission profile as a whole and also divided into mission flight segments. Research limitations/implications Emissions were calculated based on fuel flow and engine speed inputs based on ground test data for emission indices. Test data for emission indices was very limited. Practical implications As UAV utilization has been increasing around the world, this study presents important and noticeable results on the emissions that need to be considered for environmental purposes. Originality/value In literature, emission prediction studies for UAVs are very rare. In fact, UAVs typically have quite different flight speeds and altitudes than regular manned aircraft and emissions change with speed and altitude. Additionally, unlike manned aircraft, UAVs can fly more than 24 h with different operation characteristics. The originality of this study presents the emission predictions of a piston engine UAV which flies with a significantly different mission profile than a manned aircraft.


Sign in / Sign up

Export Citation Format

Share Document