Design of Signal Quality Indicator(SQI) for the Verification of the Communication Channel Condition in Guided Flight Systems

2018 ◽  
Vol 46 (12) ◽  
pp. 1049-1055
Author(s):  
Eonpyo Hong ◽  
Sangmoon Jeong ◽  
Minsik Gong
Author(s):  
Priyanka Bhardwaj ◽  
Aadi Jain ◽  
Manveen . ◽  
Richita Kamal ◽  
Rishab Chittlangia

Noise in the communication channel is well established to be a threat to digital bit transmission, resulting in many mistakes at the bit level. Different modulation methods are studied in terms of BER, probability of error and SNR to better comprehend this. In the presence of specific levels of noise in the communication channel, this analysis yields an interesting conclusion that advises the employment of particular modulation methods. A comprehensive analysis of several modulation schemes has been considered. Those include On-Off Key modulation (OOK), Binary Phase Shift Key (BPSK), Quadrature Phase Shift Key (QPSK), Pulse Amplitude Modulation (PAM) and 8-Phase Shift Key (8-PSK). This analysis can aid in the selection of a modulation approach based on the channel condition.


2021 ◽  
Vol 24 (3) ◽  
pp. 71-79
Author(s):  
Nikolay S. Arkhipov ◽  
Ivan S. Polyansky ◽  
Yuri N. Yakovlev ◽  
Alexander V. Subbotenko

In this paper, a mathematical model of a communication channel with an unmanned aerial vehicle and taking into account the specifics of the locations of a ground communication point when determining the effects of refraction, diffraction and interference of electromagnetic waves is proposed. A meaningful statement of the problem based on the mathematical relationship between the energy parameters of the first transmission equation and the quality indicators (BER) of the second transmission equation has been formed. The main features of calculating the parameters of the first equation are to determine the rules for calculating the level of attenuation due to the influence of the earths surface. The calculation of attenuations for cases of removal of an unmanned aerial vehicle from a ground communication point within the areas of line of sight, partial shade and shadow has been clarified. The second transmission equation is based on the mathematical model of the Rice communication channel. With respect to the energy parameters and the selected communication quality indicator for the formed mathematical model, examples of graphical dependencies are given in the study of typical computational problems. With respect to the energy parameters and the selected communication quality indicator for the formed mathematical model, examples of graphical dependencies in the study of typical computational problems are given.


2018 ◽  
pp. 7-12
Author(s):  
Gábor Szabó ◽  
Eszter Udvary

Expanding the functionality of LED indoor lighting with visible light communication (VLC) allows an additional communication channel beside wireless radio in buildings. This service may be based on various channel access methods and modulation types. Code division multiplexing (CDM) is a suitable method to such an application, but it is complicated to measure the signal quality which is essential to compare different codes and settings, and necessary for some applications like position-dependent information services. Computing crest factor is a suitable method to estimate quality, but it may be inaccurate in some cases. This paper presents novel methods to approximate the quality of received CDM signals along with the crest factor, aiding the more accurate investigation of the VLC CDM technique.


Author(s):  
D. Van Dyck

An (electron) microscope can be considered as a communication channel that transfers structural information between an object and an observer. In electron microscopy this information is carried by electrons. According to the theory of Shannon the maximal information rate (or capacity) of a communication channel is given by C = B log2 (1 + S/N) bits/sec., where B is the band width, and S and N the average signal power, respectively noise power at the output. We will now apply to study the information transfer in an electron microscope. For simplicity we will assume the object and the image to be onedimensional (the results can straightforwardly be generalized). An imaging device can be characterized by its transfer function, which describes the magnitude with which a spatial frequency g is transferred through the device, n is the noise. Usually, the resolution of the instrument ᑭ is defined from the cut-off 1/ᑭ beyond which no spadal information is transferred.


2009 ◽  
Vol 23 (2) ◽  
pp. 63-76 ◽  
Author(s):  
Silke Paulmann ◽  
Sarah Jessen ◽  
Sonja A. Kotz

The multimodal nature of human communication has been well established. Yet few empirical studies have systematically examined the widely held belief that this form of perception is facilitated in comparison to unimodal or bimodal perception. In the current experiment we first explored the processing of unimodally presented facial expressions. Furthermore, auditory (prosodic and/or lexical-semantic) information was presented together with the visual information to investigate the processing of bimodal (facial and prosodic cues) and multimodal (facial, lexic, and prosodic cues) human communication. Participants engaged in an identity identification task, while event-related potentials (ERPs) were being recorded to examine early processing mechanisms as reflected in the P200 and N300 component. While the former component has repeatedly been linked to physical property stimulus processing, the latter has been linked to more evaluative “meaning-related” processing. A direct relationship between P200 and N300 amplitude and the number of information channels present was found. The multimodal-channel condition elicited the smallest amplitude in the P200 and N300 components, followed by an increased amplitude in each component for the bimodal-channel condition. The largest amplitude was observed for the unimodal condition. These data suggest that multimodal information induces clear facilitation in comparison to unimodal or bimodal information. The advantage of multimodal perception as reflected in the P200 and N300 components may thus reflect one of the mechanisms allowing for fast and accurate information processing in human communication.


2020 ◽  
pp. 65-72
Author(s):  
V. V. Savchenko ◽  
A. V. Savchenko

This paper is devoted to the presence of distortions in a speech signal transmitted over a communication channel to a biometric system during voice-based remote identification. We propose to preliminary correct the frequency spectrum of the received signal based on the pre-distortion principle. Taking into account a priori uncertainty, a new information indicator of speech signal distortions and a method for measuring it in conditions of small samples of observations are proposed. An example of fast practical implementation of the method based on a parametric spectral analysis algorithm is considered. Experimental results of our approach are provided for three different versions of communication channel. It is shown that the usage of the proposed method makes it possible to transform the initially distorted speech signal into compliance on the registered voice template by using acceptable information discrimination criterion. It is demonstrated that our approach may be used in existing biometric systems and technologies of speaker identification.


Sign in / Sign up

Export Citation Format

Share Document