Bio-efficacy and phytotoxicity of glyphosate 41% SL on weed flora and its effect on soil microbial activities in non-cropped area

Author(s):  
Suresh Kumar ◽  
Neelam Sharma ◽  
Sandeep Manuja ◽  
Tamanna Bhalla
Author(s):  
Jehan Khalil ◽  
Hasan Habib ◽  
Michael Alabboud ◽  
Safwan Mohammed

AbstractOlive mill wastewater is one of the environmental problems in semiarid regions. The main goals of this study were to investigate the impacts of different olive mill wastewater levels on durum wheat (Triticum aestivum var. Douma1) production and soil microbial activities (i.e., bacteria and fungi). A pot experiment was conducted during the growing seasons 2015/2017 to evaluate the effect of three levels of olive mill wastewater on both growth and productivity attributes of wheat. Vertisol soil samples were collected from southern Syria. Two months before wheat cultivation, three levels of olive mill wastewater: T5 (5 L/m 2), T10 (10 L/m2) and T15 (15 L/m 2) were added to pots filled with the collected soil samples. Also, a control (T0) free of olive mill wastewater was considered as a reference. Results showed a significant increase (p < 0.05) in germination rate (%), plant height (cm), ear length (cm), kernels number, kernels weight per ear (g) and grain yield (g/m2) compared to control. However, T5 treatment did not induce a significant increase in terms of ear length, kernels weight per ear or yield (in the second season). On the other hand, T10 treatment had recorded the best results compared with the other two treatments (T5, T15). Similarly, the results showed a significant increase in the number of bacterial and fungi cells by increasing olive mill wastewater concentration. This research provides promising results toward using olive mill wastewater in an eco-friendly way under Syrian conditions.


2012 ◽  
Vol 47 (6) ◽  
pp. 854-862 ◽  
Author(s):  
Irenus A. Tazisong ◽  
Zachary N. Senwo ◽  
Miranda I. Williams

2015 ◽  
Vol 7 (2) ◽  
pp. 1021-1028
Author(s):  
Jatinder Kaur ◽  
Sandeep Sharma ◽  
Hargopal Singh

Changes in soil microbial activities were investigated to examine the effect of aerobically digested sewage sludge (SS) and compared with compost under incubation conditions over 63 days. Sandy soil was amended with 0.25, 0.5, 1.0 and 1.5 % w/w of compost and sewage sludge. Enzyme activity (dehydrogenase, alkaline phosphatase, acid phosphatase, phytase and urease) were examined at an interval of 3, 7, 14, 21, 28, 42 and 63 days. At the end of the experiment the change in organic carbon, nitrogen, potassium and phosphorus was also recorded.Results indicated that enzyme activities were substantially enhanced in presence of both amendments for first few days and the higher increases were measured at 1.5% of compost and sewage sludge amendment. Then an overall decrease in enzyme activity was recorded. Both the amendments also significantly increased the organic carbon, nitrogen and potassium of the soil while increase in available phosphorus was only recorded in treatment receiving compost. The present experiment indicated that addition of compost and sewage sludge have positive effect on soil microbial activity and can be safely used as soil amendment without having any adverse effect. Though, a previous examination of sewage sludge to be used must be made for heavy metals and pathogens.


2019 ◽  
Vol 14 ◽  
pp. 100343 ◽  
Author(s):  
Puja Khare ◽  
Shubham Srivastava ◽  
Nidhi Nigam ◽  
Anil Kumar Singh ◽  
Sudan Singh

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiao-Jun Nie ◽  
He-Bing Zhang ◽  
Yan-Yan Su

Abstract Understanding the impact of tillage erosion on soil organic carbon (SOC) and nitrogen (N) fractions is essential for targeted soil conservation in mountainous and hilly areas. However, little is known about this issue. In this study, we selected a tillage erosion-dominated hillslope from the Sichuan Basin, China, to determine the effect of tillage erosion on particulate OC (POC), dissolved OC (DOC), light fraction OC (LFOC), ammonium N (NH4+-N), nitrate N (NO3−-N) and alkali-hydrolysable N (AN). Additionally, we investigated the microbial activities in relation to soil C and N dynamics, including soil microbial biomass, β-glucosidase and urease activities. Tillage erosion induced serious soil loss in upper slope positions and soil deposition in lower slope positions. The observations of the various labile OC fraction distributions across the hillslope suggest that tillage erosion exerts less impact on DOC and LFOC dynamics but a notable effect on POC. The distribution pattern in total organic carbon under tillage erosion mainly depends on POC redistribution. The POC redistribution is a major factor affecting microbial activities. The AN is more prone to the tillage erosion impact than NH4+-N and NO3−-N. Effective soil conservation measures should be taken to weaken the adverse impacts of tillage erosion on POC and AN redistribution in sloping farmlands.


2019 ◽  
Vol 11 (3) ◽  
pp. 208
Author(s):  
Rayim Wendé Alice Naré ◽  
Stephania Boua ◽  
Rockia Marie Nadege Zerbo ◽  
Richard Madege

Sign in / Sign up

Export Citation Format

Share Document