scholarly journals Dynamics of Organic Carbon and Nutrients in Litterfall of Quercus mongolica Forest in Mt. Songnisan National Park

2005 ◽  
Vol 28 (6) ◽  
pp. 347-351
Author(s):  
Sang-Joon Kang ◽  
Dong-Yeoul Han
Geoderma ◽  
2012 ◽  
Vol 183-184 ◽  
pp. 41-48 ◽  
Author(s):  
A.H. Cambule ◽  
D.G. Rossiter ◽  
J.J. Stoorvogel ◽  
E.M.A. Smaling

Author(s):  
Anson W. Mackay ◽  
Rebecca Lee ◽  
James M. Russell

Abstract Rwenzori Mountains National Park, which straddles the border between the Democratic Republic of Congo and Uganda, has experienced rapid glacier loss since the beginning of the twentieth century, yet there has been little investigation of aquatic biodiversity change in the park. This study presents a paleolimnological analysis from Lake Mahoma (2990 m asl), which is situated in the bamboo-forest transition zone. Diatom and organic geochemistry data from a 39-cm-long sediment core with a basal age of c. 1715 CE were compared with new analyses of previously published data from Lakes Bujuku (3891 m asl) and Lower Kitandara (3989 m asl), in the alpine zone. Comparisons were made to determine if aquatic ecosystem changes exhibited similar inter-lake patterns over the past ~ 150 years of climate warming and glacial recession, or if only local change was apparent. The diatom flora of Lake Mahoma is acidophilous, dominated by Aulacoseira ikapoënsis since at least the mid eighteenth century. In recent decades, the obligate nitrogen-heterotroph Nitzschia palea increased in importance, concurrent with declining δ15Norg values. We suggest that these late twentieth century changes were linked to regional warming and increased thermal stratification of Lake Mahoma. Regional comparisons of the Rwenzori lakes were done using existing organic geochemistry records (total organic carbon, C/N and δ13Corg) and through diatom compositional turnover analyses, and categorisation of species into one of four diatom growth morphology traits, or guilds: tychoplanktonic, high-profile, low-profile and motile. Over the past 150 years, all three lakes showed unidirectional, compositional diatom turnover, indicating that deterministic processes had affected diatom communities. Declining turnover at each site is broadly mirrored by an increase in tychoplanktonic taxa, along with concomitant declines in high-profile diatoms at Lake Mahoma, and low-profile diatoms at Lake Bujuku, and at least for the past 60 years, at Lower Kitandara. The interplay between diatom guilds at all sites is mainly a consequence of competition for available resources. Sediment organic carbon at all sites comes from both autochthonous and allochthonous sources, the relative abundances of which are influenced by the time elapsed since lakes had glaciers in their catchment.


2016 ◽  
Vol 544 ◽  
pp. 874-882 ◽  
Author(s):  
Claus Kohfahl ◽  
Daniel Sánchez-Rodas Navarro ◽  
Jorge Armando Mendoza ◽  
Iñaki Vadillo ◽  
Elena Giménez-Forcada

2020 ◽  
Author(s):  
José A. González-Pérez ◽  
Gael Bárcenas.Moreno ◽  
Nicasio T Jiménez-Morillo ◽  
María Colchero-Asensio ◽  
Layla M. San Emeterio ◽  
...  

<p><strong>Keywords: </strong>Soil reaction, analytical pyrolysis, soil respiration, carbon stabilization</p><p>During the last decade, soil organic matter dynamics and its determining factors have received increased attention, mainly due to the evident implication of these parameters in climate change understanding, predictions and possible management. High-mountain soil could be considered as hotspot of climate change dynamic since its high carbon accumulation and low organic matter degradation rates could be seriously altered by slight changes in temperature and rainfall regimes associated to climate change effects. In the particular case of Sierra Nevada National Park, this threat could be even stronger due to its Southern character, although its elevated biodiversity could shed some light on how could we predict and manage climate change in the future.</p><p>In this study, a quantitative and qualitative organic matter characterization was performed and soil microbial activity measured to evaluate the implication of pH and vegetation in soil organic matter dynamics.</p><p>The sampling areas were selected according to vegetation and soil pH; with distinct soil pH (area A with pH<7 and area B with pH>7) and vegetation (high-mountain shrubs and pine reforested area). Soil samples were collected under the influence of several plant species representatives of each vegetation series. Six samples were finally obtained (five replicates each); three were collected in area A under<em> Juniperus communis</em> ssp. Nana (ENE), <em>Genista versicolor</em> (PIO) and <em>Pinus sylvestris</em> (PSI) and other three were collected in area B under<em> Juniperus Sabina</em> (SAB), <em>Astragalus nevadensis</em> (AST) and <em>Pinus sylvestris</em> (PCA).</p><p>Qualitative and quantitative analyses of soil organic matter were made to establish a possible relationship with microbial activity estimated by respiration rate (alkali trap) and fungi-to-bacteria ratio using a plate count method. Soil easily oxidizable organic carbon content was determined by the Walkley-Black method (SOC %) and organic matter amount was estimated by weight loss on ignition (LOI %). Analytical pyrolysis (Py-GC/MS) was used to analyse in detail the soil organic carbon composition.</p><p>Our results showed that the microbial and therefore the dynamics of organic matter is influenced by both, soil pH and soil of organic matter. So that the pH in acidic media prevail as a determining factor of microbial growth over soil organic matter composition conditioned by vegetation.</p><p><strong>Acknowledgement</strong>: Ministerio de Ciencia Innovación y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R). N.T. Jiménez-Morillo and L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2013-062573 and Ref. BES-2017-07968). Mrs Desiré Monis is acknowledged for technical assistance.</p><p> </p>


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 677-691
Author(s):  
Désiré Tsozué ◽  
Nérine Mabelle Moudjie Noubissie ◽  
Estelle Lionelle Tamto Mamdem ◽  
Simon Djakba Basga ◽  
Dieudonne Lucien Bitom Oyono

Abstract. Research carried out on soil organic carbon stock (SOCS) in the Sudano-Sahelian region of Cameroon is very rare. The few existing studies are mostly available in reports and concern in most cases carbon stocks in plant biomass. In order to contribute to the documentation on soils in this part of the country, the present work was designed to evaluate the SOCS in the main soil types and the influence of environmental factors and soil properties on these stocks under the natural dry tropical area of the Sudano-Sahelian zone of Cameroon. The study was undertaken in four sites, including three natural forest reserves (Laf, Zamai, Kosohon) and one national park (Mozogo), located at different latitudes. Three replicates were collected at each site, giving rise to three sampling points chosen per site, from 0 to 75 cm depth, for the determination of SOCS. At each sampling point, soils were sampled using depth increments of 25 cm from the surface. The studied area is covered by Haplic Vertisols, Dystric Arenosols, Dystric Leptosols and Dystric Planosols. Total SOCS (T-SOCS) content, which refers to a depth of 75 cm, decreases with increasing latitude, with 249±26.26 Mg ha−1 in Vertisols at Laf forest reserve most southerly located, 199±8.00 Mg ha−1 in Arenosols at Zamai forest reserve, 166±16.63 Mg ha−1 in Leptosols at Kosohon forest reserve and 161±8.88 Mg ha−1 in Planosols at Mozogo national park most northerly located, regardless of the altitude. No significant correlation was noted between T-SOCS and the altitude. A good correlation was noted between precipitation which decreases with increasing latitude and T-SOCS, indicating the importance of climate in the distribution of T-SOCS in the study area, which directly influences the productivity of the vegetation. More than 60 % of the SOCS was stored below the first 25 cm from the soil surface, a peculiarity of SOCS in drylands. The SOCS in the Sudano-Sahelian area of Cameroon is mainly influenced by climate and vegetation.


Sign in / Sign up

Export Citation Format

Share Document