scholarly journals Nonlinear Backstepping Control of Permanent Magnet Synchronous Motor with Rotor Speed and Position Estimation

2018 ◽  
Vol 3 (3) ◽  
pp. 133-142
Author(s):  
Abderrahmen KIRAD ◽  
Said Grouni ◽  
Omar MECHALI

This paper presents a nonlinear backstepping control strategy used to ensure good dynamic behavior, high performance and the stability of the permanent magnet synchronous motor (PMSM). However, this control requires the precise knowledge of certain variables (speed, torque and position) that are difficult to access or sensors require additional mounting space, reduce reliability, increase the cost of the engine, and make maintenance difficult. Thus, an Extended Kalman Filter (EKF) approach is proposed for the estimation of speed and rotor position in the PMSM. The interesting simulation results obtained which are subjected to the load perturbation show very well the efficiency and the good performance of the nonlinear feedback control proposed and simulated in Matlab-Simulink.

2012 ◽  
Vol 220-223 ◽  
pp. 1040-1043
Author(s):  
Hong Cui ◽  
You Qing Gao

High-speed permanent magnet synchronous motor (PMSM) is more and more widely applied in high precision processing and high-performance machines. It is very important to research practical control strategy for the stability operation of the high-speed PMSM. The strategy of sensorless grey prediction fuzzy direct torque control (DTC) is proposed which is suitable for high-speed PMSM control system. The method of prediction fuzzy control based on DTC is used to gain the flux, torque and flux oriented angle through the prediction model of the motor parameters. The best control scheme is gained by fuzzy reasoning to overcome the lag on the system making the adjustment process stable and realizing accurate predictive control. Thereby, the dynamic response of the system, anti-disturbance capability and control accuracy can be improved.


Author(s):  
Anissa Hosseynia ◽  
Ramzi Trabelsi ◽  
Atif Iqbal ◽  
Med Faouzi Mimounia

This paper deals with the synthesis of a speed control strategy for a five-phase permanent magnet synchronous motor (PMSM) drive based on backstepping controller. The proposed control strategy considers the nonlinearities of the system in the control law. The stability of the backstepping control strategy is proved by the Lyapunov theory. Simulated results are provided to verify the feasibility of the backstepping control strategy.


2018 ◽  
Vol 41 (8) ◽  
pp. 2352-2364 ◽  
Author(s):  
Arif Iqbal ◽  
Girish Kumar Singh

Owing to the superior properties and stable operation, the Permanent Magnet Synchronous Motor (PMSM) is preferably used in wide industrial applications. But, the stability of motor is found to be dependent on its initial operating condition, showing the chaotic characteristic. Therefore, this paper addresses the chaos control of PMSM by developing four simple but effective controllers, which are mathematically designed by using the principle of Lyapunov’s method for asymptotic global stability. A comparative performance assessment has been carried out for the developed controllers in terms of settling time and peak over shoot. Furthermore, the concept of conventional proportional-integration type controller has been extended to develop two more controllers for chaos control of PMSM. Numerical simulation has been carried out in Matlab environment for performance evaluation of developed controllers. The obtained analytical results have been validated through experimental implementation in real time environment on Multisim/Ultiboard platform.


Author(s):  
Rahul Singh ◽  
Vinit Chandray Roy ◽  
C.K. Dwivedi

Permanent Magnet Synchronous Motor are used in many applications that require rapid torque response and high – performance operation. New developed materials such as magnetic materials, conducting materials and insulating materials as well as several new applications have greatly contributed to the development of small and special purpose machines. Using such materials the size of the motor would considerably reduce and high performance motors can be built. Due to several new applications these motors are quite popular in a developing country such as India. The speed of a permanent magnet synchronous motor is varied by varying the frequency of an inverter. The performance of the motor is experimentally verified and the results are found to be encouraging. It is also observed that, under varying load condition, the speed of a motor remains constant at constant frequency.


2011 ◽  
Vol 268-270 ◽  
pp. 509-512 ◽  
Author(s):  
Zhi Yong Qu ◽  
Zheng Mao Ye

Permanent magnet synchronous motor systems are usually used in industry. This kind of systems is nonlinear in nature and generally difficult to control. The ordinary linear constant gain controller will cause overshoot or even loss of system stability. Application of adaptive controller to a permanent magnet synchronous motor system is investigated in this paper. The dynamic model of the system is given and the stability is also analyzed using Popov's criterion. The steady state error can be eliminated using adaptive controller combined with an integration term. Simulation results show the performance of adaptive controller with fast response and less overshoot.


Sign in / Sign up

Export Citation Format

Share Document