An Analysis of the Landscape Type on the Selected 100 of Rural Amenity

2021 ◽  
Vol 15 (2) ◽  
pp. 55-64
Author(s):  
Jiin Yang ◽  
◽  
Deugsoo Ahn
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vít Zelinka ◽  
Johana Zacharová ◽  
Jan Skaloš

AbstractThe term Sudetenland refers to large regions of the former Czechoslovakia that had been dominated by Germans. German population was expelled directly after the Second World War, between 1945 and 1947. Almost three million people left large areas in less than two years. This population change led to a break in the relationship between the people and the landscape. The aim of the study is to compare the trajectories of these changes in agricultural landscapes in lower and higher altitudes, both in depopulated areas and areas with preserved populations. This study included ten sites in the region of Northern Bohemia in Czechia (18,000 ha in total). Five of these sites represent depopulated areas, and the other five areas where populations remained preserved. Changes in the landscape were assessed through a bi-temporal analysis of land use change by using aerial photograph data from time hoirzons of 2018 and 1953. Land use changes from the 1950s to the present are corroborated in the studied depopulated and preserved areas mainly by the trajectory of agricultural land to forest. The results prove that both population displacement and landscape type are important factors that affect landscape changes, especially in agricultural landscapes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruikang Li ◽  
Yangbing Li ◽  
Bo Li ◽  
Dianji Fu

AbstractAnalyses of landscape change patterns that are based on elevation and slope can not only provide reasonable interpretations of landscape patterns but can also help to reveal evolutionary laws. However, landscape change patterns and their model in different landforms of the typical watershed in the Three Gorges Reservoir Area (TGRA) has not been quantified and assessed effectively. As a complex geographical unit, the ecological environment in the middle reach of the Yangtze River has experienced great changes due to the construction of the Three Gorges Project (TGP) and its associated human activities. Here, based mainly on a digital elevation model (DEM) and remotely sensed images from 1986, 2000, 2010, and 2017 and by using GIS technology, speeds/ trends of landscape change, the index of landscape type change intensity, landscape pattern indices, and landscape ecological security index, the spatial and temporal evolution characteristics of different elevations, slopes, and buffer landscape types were analyzed in typical watersheds, as well as an evolutionary model of the landscape pattern. The results indicated that (1) the landscape types along with the land classification and buffer zone that were influenced by the TGR construction have undergone a phased change, with the period 2000–2010 being the most dramatic period of landscape evolution during the impoundment period; (2) landscape type shifts from human-dominated farmland to nature-driven forestland and shrub-land as elevations, slopes and buffer distances increased. The landscape has shifted from diversity to relative homogeneity; (3) land types and buffer zones played essential roles in the landscape pattern index, which is reflected in the differences in landscape type indices for spatial extension and temporal characteristics. The results of this paper illustrate the spatial–temporal characteristics of various landscape types at three distinct stages in the construction of the TGR. These findings indicate that the landscape ecological security of the watershed is improving year by year. The follow-up development of the TGRA needs to consider the landscape change patterns of different landforms.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Drago Kladnik ◽  
Alexandra Kruse ◽  
Blaž Komac

2019 ◽  
Vol 28 (1) ◽  
pp. 131-142
Author(s):  
Daria Słonina ◽  
Grzegorz Kusza ◽  
Mateusz Mikołajów

Nowadays, a significant part of cities is tackling the problems with post-mining areas. This manuscript is an original research which shows possibilities of their reclamation. The aim of the article is to present the proposal of developing the closed limestone quarry and creating a botanical garden. The proposed spatial solutions allow for creating a new, tourist and recreation space, maintaining the natural heritage. The work also assumed carrying out a dendrological inventory, in order to determine the existing dendrofl ora. The required spatial, nature and communication analyses, which illustrate the current condition of the area and defi ne further design works, have also been carried out. The main idea of the project was to maintain the particular biodiversity, combined with regional culture and its continuous development. This type of assumption aims not only at protection of endangered species. It also has a great role in shaping the awareness of natural environment of various social groups. The creation of a rainforest substitute in the Opole Botanical Garden was possible through selection of the existing afforestation, considering its adaptation as well as through liquidation and introduction of new trees, shrubs, perennial and climbing plants, which shall emphasise the tropical landscape type by their shapes, texture and colours. The project includes many elements, which reflect the general image of humid rainforests. The planned vegetation in connection with the appropriately selected architecture shall undoubtedly influence visitors’ senses, transferring them to the ‘wild’ and mysterious part of the world.


2013 ◽  
Vol 864-867 ◽  
pp. 2577-2581
Author(s):  
Xue Feng Xie ◽  
Cui Xiao ◽  
Guo Jun Jiang ◽  
Tao Wu ◽  
Wei Xu

This paper use 2007 and 2010 SPOT-5 images as a data source, combined with RS and GIS technology, introduced the concept of hemeroby, developed a suitable landscape classification system in Ximen Island, systematically evaluated the dynamic changes of hemeroby of Ximen Island marine Protected Areas. The results indicated that from 2007 to 2010, the ecological environment of Ximen Island has gradually improved. Completely disturbed landscape type decreased sharply in total area, while undisturbed types were increased a lot. From the perspective of total characteristics of the spatial distribution of hemeroby index, the residential , traffic land and landscape surrounding anthropogenic interference with the highest index.


2016 ◽  
Vol 113 (25) ◽  
pp. 6939-6944 ◽  
Author(s):  
Benjamin G. Van Allen ◽  
Volker H. W. Rudolf

Understanding how changes to the quality of habitat patches affect the distribution of species across the whole landscape is critical in our human-dominated world and changing climate. Although patterns of species’ abundances across a landscape are clearly influenced by dispersal among habitats and local species interactions, little is known about how the identity and origin of dispersers affect these patterns. Because traits of individuals are altered by experiences in their natal habitat, differences in the natal habitat of dispersers can carry over when individuals disperse to new habitats and alter their fitness and interactions with other species. We manipulated the presence or absence of such carried-over natal habitat effects for up to eight generations to examine their influence on two interacting species across multiple dispersal rates and different habitat compositions. We found that experimentally accounting for the natal habitat of dispersers significantly influenced competitive outcomes at all spatial scales and increased total community biomass within a landscape. However, the direction and magnitude of the impact of natal habitat effects was dependent upon landscape type and dispersal rate. Interestingly, effects of natal habitats increased the difference between species performance across the landscape, suggesting that natal habitat effects could alter competitive interactions to promote spatial coexistence. Given that heterogeneity in habitat quality is ubiquitous in nature, natal habitat effects are likely important drivers of spatial community structure and could promote variation in species performance, which may help facilitate spatial coexistence. The results have important implications for conservation and invasive species management.


2016 ◽  
Vol 16 (7) ◽  
pp. 2033-2044 ◽  
Author(s):  
Brenda Maria Zoderer ◽  
Paola Sabina Lupo Stanghellini ◽  
Erich Tasser ◽  
Janette Walde ◽  
Harald Wieser ◽  
...  

2010 ◽  
Vol 18 (3) ◽  
pp. 234-241 ◽  
Author(s):  
Margarita Jankauskaitė ◽  
Darijus Veteikis

Today landscape change monitoring becomes important in the field of sustainable development planning. Real changes of landscape have to be observed in a large scale (not smaller than 1:10,000) in order to avoid generalization of small landscape elements. In such a scale it is rational to perform the monitoring in sample areas that would be enough statistically abundant. The paper offers an original method of distributing the landscape sample areas in Lithuanian territory, differing from most methods based on random choose of sample areas though thorough analysis of the analogous methods abroad was performed. The work was sponsored by the Environmental Agency at the Lithuanian Ministry of Environment. In accordance to the spread of different natural landscape types (like clayey plains, morainic hills, sandy plains, etc.), a set of 100 sample areas (2.5 km2 each) was distributed in Lithuanian territory. To increase the sample area number in smaller landscape types (spit, coastal sandy plain, delta), some proportional corrections were made. Thus, the largest number of the sample areas was assigned to the most spread clayey plains (22), the smallest number – to sandy coastal plain (3). In order to find a concrete place for each sample area inside the landscape type a computer program was employed and the highest representation principle applied. Several tens of thousands possible positions of the sample areas were tested in order to find the best in representing land cover structure. This was achieved by calculating relative remoteness of tested samples’ land cover structure from the respective landscape type structure, further selecting the most patchy samples. Selecting the position of a sample area was also influenced by the buffer capacity (resistance to the chemical impact) of landscape, mostly concentrating on the areas with less buffer capacity (more sensitive to chemical pollution). Santrauka Tvariajai pletrai planuoti tampa aktualia kraštovaizdžio kaitos stebesena. Realūs kraštovaizdžio pokyčiai Lietuvos mastu turi būti fiksuojami stambiuoju masteliu (ne smulkesniu nei 1:10 000), vengiant nepageidautino smulkiu kraštovaizdžio elementu generalizavimo. Tokiu masteliu racionalu būtu pokyčiu stebejimus atlikti etalonuose, ju skaičius turetu būti statistiškai patikimas. Pateikiama originali kraštovaizdžio monitoringo etalonu išdestymo Lietuvos teritorijoje metodika. Darbas buvo atliktas remiant Aplinkos apsaugos agentūrai prie Lietuvos aplinkos ministerijos. Metodika parengta atsižvelgiant ir i užsienio šaliu patirti. Pagal kraštovaizdžio tipu paplitima proporcingai buvo išdalyta 100 2,5 km2 ploto etalonu, papildomai koreguojant (padidinant) etalonu skaičiu mažai paplitu‐siuose kraštovaizdžio tipuose (nerijoje, pajūrio lygumoje, deltoje). Taigi daugiausia etalonu (22) buvo skirta plačiausiai paplitusioms molingosioms lygumoms, mažiausiai (3) – pajūrio lygumai. Etalonams konkrečios vietos buvo parenkamos kompiuterine programa ir vadovautasi didžiausio reprezentatyvumo principu. Kiekvieno kraštovaizdžio tipo buvo išbandyta nuo keliu šimtu iki keliasdešimties tūkstančiu galimu etalonu padečiu, nustatyta pagal žemes dangos struktūra reprezentuojančios geriausiai. Etalonu vietu parinkimas buvo siejamas ir su kraštovaizdžio buferiškumo cheminei taršai arealais, daugiau koncentruojant mažesnio buferiškumo (jautresniuose cheminei taršai) plotuose. Резюме В настоящее время мониторинг изменений ландшафта становится актуальным для планировки сбалансированного развития. Реальные изменения ландшафта в Литве должны быть прослеживаемы в крупном масштабе (не мельче чем 1:10.000) во избежание нежелательной генерализации мелких структурных элементов ландшафта. В таком масштабе рационально осуществлять наблюдения на специально выделенных эталонных территориях, число которых должно быть статистически достаточным. В статье приведена методика расположения названных эталонов на территории Литвы. Работа выполнена при поддержке Агентства по охране окружающей среды при Министерстве окружающей среды. Методика разработана с учетом опыта зарубежных стран. С учетом распределения ландшафтных типов пропорционально было поделено сто эталонов площадью 2,5 км2 каждый. Дополнительно корректировалось (увеличивалось) число эталонов в мало распространенных ландшафтных типах (на косе, приморской равнине, в дельте). Наибольшее число эталонов (22) было отдано глинистым (наиболее распространенным) равнинам, а наименьшее (3) – приморской равнине. С целью подбоpa для эталонов конкретных мест была применена компьютерная программа, а также следовали принципу наивысшей репрезентативности. В каждом ландшафтном типе было испробовано от нескольких сот до нескольких десятков тысяч возможных положений эталонов с целью определить лучшее положение по репрезентативности земельно покровной структуры. Подбор мест для эталонов был осуществлен с учетом сопротивляемости ландшафта химическому загрязнению. Больше эталонов размещалось в наименее устойчивых ареалах.


Sign in / Sign up

Export Citation Format

Share Document