scholarly journals Selective colorimetric molecular probe for cyanide ion detection in aqueous solution

2018 ◽  
Vol 9 (4) ◽  
pp. 338-346
Author(s):  
Yousef Mohammad Hijji ◽  
Hani Darwish Tabba ◽  
Rajeesha Rajan ◽  
Hamzeh Mohammad Abdel-Halim ◽  
Musa Ibrahim El-Barghouthi ◽  
...  

5-Nitro-2-hydroxybenzaldehyde (1) demonstrated to be a sensitive, and a selective molecular probe for cyanide ion (CN-) in aqueous media. In acetonitrile, compound 1 shows sensitivity and selectivity for cyanide, acetate and fluoride, in comparison to other investigated anions using both visual and spectroscopic means. In aqueous solution, the color becomes intense yellow upon addition of cyanide, while acetate showed this effect to a much lower extent. Significant spectral changes were also detected with the appearance of two new absorption bands at 358 and 387 nm. This was accompanied by concomitant intensity decrease for the band at 314 nm. Fluoride, dihydrogen phosphate, chloride, bromide, perchlorate, and azide showed negligible color and spectral changes for the probe in aqueous solutions. On the other hand, hydrogen sulfate caused fainting of the yellow color and gave a spectrum similar to that of the sensor in polar aprotic solvents. The cyanide ion was detected at micro molar levels in aqueous solutions with a stoichiometry of 1:1 for CN: probe in acetonitrile as the solvent. Cyanide, hydroxide, acetate, fluoride and dihydrogen phosphate showed identical changes to color and spectra, indicating a hydrogen bonding and a deprotonation mechanism.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 411 ◽  
Author(s):  
Liujun Pei ◽  
Yuni Luo ◽  
Xiaomin Gu ◽  
Huashu Dou ◽  
Jiping Wang

The main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber could not swell as a result of the non-polar media. However, because water molecules can diffuse into the non-crystalline region of the fiber, cellulosic fiber could swell by water which was dispersed or emulsified in a non-aqueous dyeing system. To study the diffusion mechanism of an aqueous solution in the siloxane non-aqueous dyeing system, siloxane non-aqueous media was first diffused to the cellulosic fiber because of its lower surface tension. The resulting aqueous solution took more time to diffuse the surface of the cellulosic fiber, because water molecules must penetrate the siloxane non-aqueous media film. Compared with the fluorescent intensity of the fiber surface, the siloxane film could be re-transferred to the dye bath under the emulsification of the surfactant and the mechanical force. Therefore, a longer diffusion time of the aqueous solution ensured the dyeing feasibility for cellulosic fiber in the non-aqueous dyeing system.


1957 ◽  
Vol 35 (9) ◽  
pp. 1002-1009 ◽  
Author(s):  
R. C. Turner ◽  
Kathleen E. Miles

The absorption spectra of the ferric ion and its first hydrolysis product in an aqueous solution of perchloric acid was determined. The Fe3+ ion has two absorption bands, one with a maximum at 240 mμ and another which extends into the region below 200 mμ. The FeOH2+ ion also has two absorption bands, the maxima of which occur at 300 mμ and 205 mμ. A figure shows the magnitude of the absorption of each of these ions from 200 to 350 mμ.


1972 ◽  
Vol 26 (6) ◽  
pp. 579-584 ◽  
Author(s):  
A. L. Marston ◽  
S. F. Bush

Raman spectra of concentrated aqueous solutions of ferric chloride were recorded in the spectral range 50 to 500 cm−1. In near-saturated solutions, spectra show a four-line pattern typical of the tetrahedral FeCl4– complex: 390 cm−1 (w); 335 cm−1 (vs, p); 135 cm−1 (w); 110 cm−1 (s). At lower concentrations a new species dominates the spectrum, showing characteristic Raman lines at 318 cm−1 (s, p) and 165 cm−1 (vw). Conventional investigations of spectral changes with concentration of Fe(III) and chloride, coupled with group theoretical arguments, indicate that the stoichiometry of the complex must be FeCl3 or lower. Of the several symmetries that a FeCl3 complex might assume (C2v, C3v, D2h (dimer), and D3h), the D3h trigonal bipyramid structure FeCl3·2H2O with three equatorial chloride ligands and two axial waters is most compatible with the spectral evidence.


CrystEngComm ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 1166-1175 ◽  
Author(s):  
Ying-Jie Yang ◽  
Yue-Hua Li ◽  
Dong Liu ◽  
Guang-Hua Cui

Two water-stable cadmium(ii) MOFs were synthesized and characterized. 1 is the first dual-function Cd(ii)-MOF luminescent sensor for sensing acetylacetone and Cr2O72− in aqueous solution with high sensitivity and selectivity and good recyclability.


2020 ◽  
Vol 56 (27) ◽  
pp. 3851-3854 ◽  
Author(s):  
Xiaomin Chai ◽  
Hai-Hua Huang ◽  
Huiping Liu ◽  
Zhuofeng Ke ◽  
Wen-Wen Yong ◽  
...  

A Co-based complex displayed the highest photocatalytic performance for CO2 to CO conversion in aqueous media.


1984 ◽  
Vol 49 (3) ◽  
pp. 559-569 ◽  
Author(s):  
Jaroslav Nývlt

The metastable zone width of an aqueous solution of KCI was measured as a function of the time and temperature of overheating above the equilibrium solubility temperature. It has been found that when the experiments follow close upon one another, the parameters of the preceding experiment affect the results of the experiment to follow.The results are interpreted in terms of hypotheses advanced in the literature to account for the effect of thermal history of solution. The plausibility and applicability of these hypotheses are assessed for the given cause of aqueous solution of a well soluble electrolyte.


1879 ◽  
Vol 29 (196-199) ◽  
pp. 472-482 ◽  

In order to investigate this subject, I devised and constructed the following apparatus :—A and B are two thin glass basins, 81 millims. internal diameter (= 5,153 sq. millims. of mercury surface), and 6·0 centims. deep; each containing a layer of mercury about 1·0 centim. deep, covered by a layer, about 3 centims. deep, of the aqueous solution to be examined.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3598
Author(s):  
Nirmal K. Shee ◽  
Hee-Joon Kim

A series of porphyrin triads (1–6), based on the reaction of trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP) with six different phenoxy Zn(II)-porphyrins (ZnLn), was synthesized. The cooperative metal–ligand coordination of 3-pyridyl nitrogens in the SnP with the phenoxy Zn(II)-porphyrins, followed by the self-assembly process, leads to the formation of nanostructures. The red-shifts and remarkable broadening of the absorption bands in the UV–vis spectra for the triads in CHCl3 indicate that nanoaggregates may be produced in the self-assembly process of these triads. The emission intensities of the triads were also significantly reduced due to the aggregation. Microscopic analyses of the nanostructures of the triads reveal differences due to the different substituents on the axial Zn(II)-porphyrin moieties. All these nanomaterials exhibited efficient photocatalytic performances in the degradation of rhodamine B (RhB) dye under visible light irradiation, and the degradation efficiencies of RhB in aqueous solution were observed to be 72~95% within 4 h. In addition, the efficiency of the catalyst was not impaired, showing excellent recyclability even after being applied for the degradation of RhB in up to five cycles.


2021 ◽  
Author(s):  
Junyi Li ◽  
Zoltán Szabó ◽  
Mats Jonsson

Four different uranyl-(peroxide)-carbonate complexes were identified during studtite and meta-studtite dissolution in aqueous solution containing 10 mM HCO3− by 13C NMR.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhirayr Baghdasaryan ◽  
Arsen Babajanyan ◽  
Levon Odabashyan ◽  
Jung-Ha Lee ◽  
Barry Friedman ◽  
...  

AbstractIn this study, a new optical method is presented to determine the concentrations of NaCl and glucose aqueous solutions by using a thermo-elastic optical indicator microscope. By measuring the microwave near-field distribution intensity, concentration changes of NaCl and glucose aqueous solutions were detected in the 0–100 mg/ml range, when exposed to microwave irradiation at 12 GHz frequency. Microwave near-field distribution intensity decreased as the NaCl or glucose concentration increased due to the changes of the absorption properties of aqueous solution. This method provides a novel approach for monitoring NaCl and glucose in biological liquids by using a CCD sensor capable of visualizing NaCl and glucose concentrations without scanning.


Sign in / Sign up

Export Citation Format

Share Document