scholarly journals An Adaptive Image Steganography Technique Using LSB and MSB

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Lakkshmanan Ajanthaa ◽  
Puja Dharia ◽  
Fairy Gandhi

IN modern years Steganography is playing a significant role in secure communication. It is a technique of embedding secret information into cover media (image, video, audio and text) such that only the sender and the authoritative receiver can detect the occurrence of hidden information. The two essential properties of Steganography are good visual imperceptibility of the payload which is crucial for security of hidden communication and payload is essential for conveying huge quantity of secret information. Steganography has to satisfy two requirements, one is capability and the other is transparency. Capability means embedding large payload into media. Transparency means an ability to prevent distinction between stego and cover image by statistical analysis. Earlier they have used least significant bit (LSB), the simplest form of Steganography. In LSB method, data is inserted in the least significant bit which leads to a negligible change on the cover image that is not visible to the naked eye. Since this method can be easily cracked, it is more exposed to attacks. In the proposed system we propose Spatial Domain Steganography using 1-Bit Most Significant Bit (MSB) with confused manner.

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1906
Author(s):  
Hyeokjoon Kweon ◽  
Jinsun Park ◽  
Sanghyun Woo ◽  
Donghyeon Cho

In this paper, we propose deep multi-image steganography with private keys. Recently, several deep CNN-based algorithms have been proposed to hide multiple secret images in a single cover image. However, conventional methods are prone to the leakage of secret information because they do not provide access to an individual secret image and often decrypt the entire hidden information all at once. To tackle the problem, we introduce the concept of private keys for secret images. Our method conceals multiple secret images in a single cover image and generates a visually similar container image containing encrypted secret information inside. In addition, private keys corresponding to each secret image are generated simultaneously. Each private key provides access to only a single secret image while keeping the other hidden images and private keys unrevealed. In specific, our model consists of deep hiding and revealing networks. The hiding network takes a cover image and secret images as inputs and extracts high-level features of the cover image and generates private keys. After that, the extracted features and private keys are concatenated and used to generate a container image. On the other hand, the revealing network extracts high-level features of the container image and decrypts a secret image using the extracted feature and a corresponding private key. Experimental results demonstrate that the proposed algorithm effectively hides and reveals multiple secret images while achieving high security.


2015 ◽  
Vol 740 ◽  
pp. 857-860
Author(s):  
Xun Ru Yin

A three-party quantum secure direct communication protocol is proposed, in which the qubit transmission forms a closed loop. In this scheme, each party implements the corresponding unitary operations according to his secret bit value over the quantum channels. Then, by performing Bell measurements on the encoded particles, each party can extract the other two parties’ secret information simultaneously. Thus the three parties realize the direct exchange successfully.


Author(s):  
Gandharba Swain ◽  
Dodda Ravi Kumar ◽  
Anita Pradhan ◽  
Saroj Kumar Lenka

In this paper we present a technique for secure communication between two parties Alice and Bob. We use both cryptography and steganography. We take image as the carrier to use steganography. By using our own substitution cipher called two square reverse we encrypt the secret information. Then the cipher text of the secret information is embedded into the carrier image in LSB (least significant bit) minus one position of some selected bytes. The byte selection is done depending on the bit pattern of the secret information. Thus the embedding locations are dependent on the secret message. So the intruder will face difficulties to locate the bits. After embedding the resultant image will be sent to the receiver, the receiver will apply the reverse operation what the sender has done and get the secret information.


2021 ◽  
Vol 15 ◽  
pp. 84-88
Author(s):  
Siddeeq Y. Ameen ◽  
Muthana R. Al-Badrany

The paper presents two approaches for destroying steganogrphy content in an image. The first is the overwriting approach where a random data can be written again over steganographic images whereas the second approach is the denoising approach. With the second approach two kinds of destruction techniques have been adopted these are filtering and discrete wavelet techniques. These two approaches have been simulated and evaluated over two types of hiding techniques, Least Significant Bit LSB technique and Discrete Cosine Transform DCT technique. The results of the simulation show the capability of both approaches to destroy the hidden information without any alteration to the cover image except the denoising approach enhance the PSNR in any received image even without hidden information by an average of 4dB.


2019 ◽  
Vol 9 (2) ◽  
Author(s):  
Dian Hafidh Zulfikar

<p class="SammaryHeader" align="center"><strong><em>Abstract</em></strong><em></em></p><p><em> </em>The  least significant-bit (LSB) based techniques are very popular for steganography in spatial domain. The simplest LSB technique simply replaces the LSB in the cover image with the  bits from secret information. Further advanced techniques use some criteria to identify the pixels in which LSB(s) can be replaced with the bits of secret information. In Discrete Cosine Transform (DCT) based technique insertion of secret information in carrier depends on the DCT coefficients. Any DCT coefficient value above proper threshold is a potential place for insertion of secret information.</p><p class="Abstrak"><strong> </strong><strong>Keywords :</strong> Discrete Cosine Transform (DCT), steganography, secret message</p><p><strong><em> </em><em>Abstra</em><em>k</em></strong></p><p>Pada steganografi domain spasial, teknik least significant-bit (LSB) merupakan teknik yang paling banyak digunakan pada steganografi. Teknik yang sederhana yang hanya mengubah nilai LSB pada cover image dengan nilai bit pesan rahasia, atau dengan teknik yang lebih baik lagi yaitu dengan menentukan bit-bit LSB mana yang akan dilakukan pergantian nilai bit. Lain halnya dengan metode Discrete Cosine Transform (DCT), teknik steganografi ini akan menyembunyikan informasi rahasia tergantung dari nilai Koefisien DCT.</p><p class="Abstrak"> </p><p class="Abstrak"><strong>Kata Kunci :</strong> Steganografi, DCT, Citra, JPEG, Pesan Rahasia</p>


2018 ◽  
Vol 38 (2) ◽  
pp. 61-69 ◽  
Author(s):  
Maricela Jiménez Rodríguez ◽  
Carlos Eduardo Padilla Leyferman ◽  
Juan Carlos Estrada Gutiérrez ◽  
María Guadalupe González Novoa ◽  
Horacio Gómez Rodríguez ◽  
...  

 In this work, steganography is implemented in photographs captured by an unmanned aerial vehicle (drone), with the purpose of adding an identifier that indicates which device they are taken from so it works for the recovery of the origin. In the system, a new technique that modifies the least significant bit (LSB) is applied, using a mathematical model to generate the chaotic orbits, one of the parts selects the RGB channel (Red, Green or Blue) where the LSB is changed and the other is implemented to calculate the random position of the sub pixel to be modified in the selected channel. In addition, a comparison between the bit to be hidden and the LSB of the pixel of the image is performed to verify if it is not necessary to modify it, which lessens the alterations in the container image. It is a tool to capture photos remotely with the Ar.Drone 2.0, with the features needed to perform an analysis that uses correlation diagrams and histograms to verify if the integrity of the message is guaranteed or if changes in the stego-image are visible to the naked eye. On the other hand, a test was done on the Baboon image to compare the robustness of the proposed system with other investigations, evaluating the correlation, contrast, energy, homogeneity, MSE, PSNR and quality index. The results generated were compared with the work of other authors concluding our system provides greater security, integrity, high sensitivity to the keys, it is not linked to a single chaotic system and can be applied to hide imperceptibly all kinds of information, in: radiographs, videos, files, official documents, and other types of containers.


2020 ◽  
Vol 20 ◽  
pp. 17-22
Author(s):  
A. Lagun ◽  
O. Polotai

In the article has considered the peculiarities of steganographic algorithms implemenation for hiding information in inmoveable images. Authors has described different embedding algorithms which use the method of least significant bit. In particular, the use of digital filtering allows you to better select the necessary pixels for embedding, and the use of a pseudorandom sequence generator allows you to more effectively hide secret information, complicating the search for secret information to the attacker.From the existing color palettes to represent inmoveable images have been selected the most common RGB pal-ette, which contains red, green, and blue intensities to produce image pixels. Colors that are less sensitive to the human eye are used to form the filled steganographic containers to provide additional visual stability.Also, in the paper authors have investigated the features of hiding digital text information in a inmoveable image as a BMP file and have realized an algorithm that for images of different size allows you to hide a text file of the necessary size. In particular, the number of bytes of the secret message is written to the original container to retrieve the required number of characters during searching. In addition, it takes into account the peculiarities of forming a BMP file that contains additional alignment bytes of the string.In general, the algorithm allows you to select a container file of the appropriate size to hide the secret information, as well as the colors of the palette in which the information will be embedded. The extracting of secret information occurs until the number of bytes of the hidden message is reached. This value has recorded at the beginning of the hiding text. You can use encryption or compression algorithms to complication searching of clear text by attacker. Only users those who are aware of the algorithms used and perhaps the keys will be able to read the hidden information correctly.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Maheswari Subramanian ◽  
Reeba Korah

Information hiding techniques have a significant role in recent application areas. Steganography is the embedding of information within an innocent cover work in a way which cannot be detected by any person without accessing the steganographic key. The proposed work uses a steganographic scheme for useful information with the help of human skin tone regions as cover image. The proposed algorithm has undergone Lagrange interpolation encryption for enhancement of the security of the hidden information. First, the skin tone regions are identified by using YCbCr color space which can be used as a cover image. Image pixels which belong to the skin regions are used to carry more secret bits, and the secret information is hidden in both horizontal and vertical sequences of the skin areas of the cover image. The secret information will hide behind the human skin regions rather than other objects in the same image because the skin pixels have high intensity value. The performance of embedding is done and is quite invisible by the vector discrete wavelet transformation (VDWT) technique. A new Lagrange interpolation-based encryption method is introduced to achieve high security of the hidden information with higher payload and better visual quality.


2019 ◽  
Vol 17 (1) ◽  
pp. 128-136
Author(s):  
Mohammad Alia ◽  
Khaled Suwais

Steganography is the art of hiding secret data inside digital multimedia such as image, audio, text and video. It plays a significant role in current trends for providing secure communication and guarantees accessibility of secret information by authorised parties only. The Least-Significant Bit (LSB) approach is one of the important schemes in steganography. The majority of LSB-based schemes suffer from several problems due to distortion in a limited payload capacity for stego-image. In this paper, we have presented an alternative steganographic scheme that does not rely on cover images as in existing schemes. Instead, the image which includes the secure hidden data is generated as an image of a curve. This curve is resulted from a series of computation that is carried out over the mathematical chaotic fractal sets. The new scheme aims at improving the data concealing capacity, since it achieves limitless concealing capacity and disposes of the likelihood of the attackers to realise any secret information from the resulted stego-image. From the security side, the proposed scheme enhances the level of security as the scheme depends on the exact matching between secret information and the generated fractal (Mandelbrot-Julia) values. Accordingly, a key stream is created based on these matches. The proposed scheme is evaluated and tested successfully from different perspectives


Sign in / Sign up

Export Citation Format

Share Document