scholarly journals Numerical Flow Disturbance Testing of the Innovative Ultrasonic Flow Meter

2021 ◽  
Vol 2 (1) ◽  

Ultrasonic flow meters are devices for fluid flow measurement using the ultrasonic principle. Within the technical requirements for gas meters, the flow disturbance test is required. The aim of this study was the CFD analysis of the fluid flow field inside the ultrasonic gas meter regarding the influence of flow disturbance. The methodology for numerical analysis and results assessment was defined. The velocity profiles in the area for ultrasonic measurement have been obtained. The evaluation of the profiles was aimed to confirm that the velocity field (profile) is flow independent. Furthermore, it was necessary to prove insensitivity to input disturbance. The obtained results lead to the statement that the velocity profiles can be considered invariant when the flow rate changes and the disturbance do not affect the velocity field in the ultrasonic measurement area. The influence of disturbance should be negated due to the flow meter channel used.

2014 ◽  
Vol 654 ◽  
pp. 262-265
Author(s):  
Jian Ling Deng ◽  
Yong Zhu ◽  
Zi Li Zhou ◽  
Rong Rong Zhai ◽  
Ji Feng Song ◽  
...  

In this paper, a dual-axis tracking trough solar collector system is established, and used to measure and calibrate flow rate at different conditions by using the ultrasonic flow meter and mass flow meter, providing important reference for follow-up experimental study. With the changing of the medium’s temperature and the rotation speed variation of the pump, the two flow meters were used to work together to measure the accurate flow measurements, obtaining the measurement error of the mass flow meter. After that, the reason of error and methods used to reduce the error are analyzed.


1999 ◽  
Vol 121 (2) ◽  
pp. 422-426 ◽  
Author(s):  
Tore Lo̸land ◽  
Lars R. Sætran ◽  
Robert Olsen ◽  
Inge R. Gran ◽  
Reidar Sakariassen

The ultrasonic flow meter is a newcomer among flow meters for measuring large quantities of natural gas. It has notable advantages compared to traditional meters. The ultrasonic flow meter is much more compact and has a wider dynamic range for flow measurements than the orifice plate meter. When manufactured, the ultrasonic sensors are often set back from the pipe wall in a cavity. When the fluid flows past the cavities, a secondary flow of vortices with characteristic size equal to the cavity width is established inside the cavities. The aim of this study has been to investigate the influence of this secondary flow on the accuracy of the ultrasonic flow meter. Both measurements and numerical simulations of the cavity flow have been conducted. It has been found from the present work, that the influence of the flow in the cavities on the measurements increases nonlinearly with the pipe flow rate.


2012 ◽  
Vol 65 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Frédérique Larrarte ◽  
Pierre François

Ultrasonic flow meters are commonly used in wastewater management. Under certain circumstances, a reduction in the flow meter range may occur and cause significant error in the flow rate measurement. Attenuation due to suspended particles is one of the phenomena capable of reducing the flow meter range. The present paper examines attenuation resulting from re-suspended pond sediment over a wide range of concentration values. It appears that a formula established for sand suspensions provides a good estimate of ultrasound attenuation for these types of particles as well. Experiments conducted for wastewater under particle concentrations commonly encountered in sewer networks demonstrate that the attenuation by particles only contributes to a negligible extent towards intensity decay, in accordance with theoretical predictions. We also theoretically determine herein the operating conditions under which the range of an ultrasonic flow meter would be significantly reduced due to particle attenuation.


Author(s):  
E.V. Glebova ◽  
◽  
A.T. Volokhina ◽  
E.A. Polikakhina ◽  
◽  
...  

It is known that changes in the flow rate of the medium can directly affect the safety of the process of refining oil and petroleum products. Therefore, the use of high-precision flow meters is one of the safety barriers to prevent possible accidents and incidents. Unfortunately, the task of parametric measurement of the consumption of oil and petroleum products before and after their processing in most cases causes certain difficulties. For this reason, each specific measurement task should be approached from a different perspective, offering different means and methods of measurement, allowing to achieve the most reliable and accurate data on the measured flow rate. Operating conditions at the oil refineries place high demands on flow meters. Conventional orifice flow meters, which are often used to measure flow in the oil refineries, have certain disadvantages: they require frequent maintenance, process interruptions during installation, cause pressure losses in the pipe. Based on the experience of foreign companies in replacing insertion flow meters with clamp-on flow meters, it was decided to use non-invasive (non-contact) flow meters for medium measurement. The advantages of these flow meters are that there is no need to cut pipes, which practically eliminates the risk of leaks occurrence during installation. Also, the ultrasonic flow meter does not have direct contact with the measured medium, which allows avoiding contamination of both the flow meter itself and the medium, as a result, increasing the accuracy and durability of flow measurement at the site. Research objectives: substantiation of the possibility of operation of an ultrasonic flow meter at the oil refining site, recommendations for the use of various sensors, as well as selection of the optimal installation site for the device. The flow rate readings matched the previously established readings taken from the orifice meters. As a result, it is concluded that the ultrasonic flow meters can be used to measure the flow rate of stripped oil.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1100-1107
Author(s):  
Ghulam Rasool ◽  
Waqar A. Khan ◽  
Sardar Muhammad Bilal ◽  
Ilyas Khan

Abstract This research is mainly concerned with the characteristics of magnetohydrodynamics and Darcy–Forchheimer medium in nanofluid flow between two horizontal plates. A uniformly induced magnetic impact is involved at the direction normal to the lower plate. Darcy–Forchheimer medium is considered between the plates that allow the flow along horizontal axis with additional effects of porosity and friction. The features of Brownian diffusive motion and thermophoresis are disclosed. Governing problems are transformed into nonlinear ordinary problems using appropriate transformations. Numerical Runge–Kutta procedure is applied using MATLAB to solve the problems and acquire the data for velocity field, thermal distribution, and concentration distribution. Results have been plotted graphically. The outcomes indicate that higher viscosity results in decline in fluid flow. Thermal profile receives a decline for larger viscosity parameter; however, Brownian diffusion and thermophoresis appeared as enhancing factors for the said profile. Numerical data indicate that heat flux reduces for viscosity parameter. However, enhancement is observed in skin-friction for elevated values of porosity factor. Data of this paper are practically helpful in industrial and engineering applications of nanofluids.


1991 ◽  
Vol 113 (3) ◽  
pp. 206-210 ◽  
Author(s):  
D. Yogi Goswami

This paper analyzes velocity profiles for flow through circular tubes in laminar, turbulent, and transition region flows and how they affect measurement by flow-meters. Experimental measurements of velocity profiles across the cross-section of straight circular tubes were made using laser doppler velocimetry. In addition, flow visualization was done using the hydrogen bubble technique. Velocity profiles in the laminar and the turbulent flow are quite predictable which allow the determination of meter factors for accurate flow measurement. However, the profiles can not be predicted at all in the transition region. Therefore, for the accuracy of the flowmeter, it must be ensured that the flow is completely in the laminar regime or completely in the turbulent regime. In the laminar flow a bend, even at a large distance, affects the meter factor. The paper also discusses some strategies to restructure the flow to avoid the transition region.


2017 ◽  
Vol 77 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Haoming Yang ◽  
David Z. Zhu ◽  
Yanchen Liu

Abstract Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.


Author(s):  
Raju Ananth ◽  
Karen Fujikawa ◽  
Jay Gillis

This paper presents a theoretical study of the velocity field in the annulus formed between the Reactor Pressure Vessel (RPV) and the shroud of a Boiling Water Reactor (BWR) under normal and accident flow conditions. Simplified geometry and an ideal irrotational flow are assumed to solve the problem using velocity potentials.


Sign in / Sign up

Export Citation Format

Share Document