scholarly journals Carbonate reservoir rock typing algorithm based on integrated approach (IRT)

2021 ◽  
Vol 6 (4) ◽  
pp. 62-70
Author(s):  
Mariia A. Kuntsevich ◽  
Sergey V. Kuznetsov ◽  
Igor V. Perevozkin

The goal of carbonate rock typing is a realistic distribution of well data in a 3D model and the distribution of the corresponding rock types, on which the volume of hydrocarbon reserves and the dynamic characteristics of the flow will depend. Common rock typing approaches for carbonate rocks are based on texture, pore classification, electrofacies, or flow unit localization (FZI) and are often misleading because they based on sedimentation processes or mathematical justification. As a result, the identified rock types may poorly reflect the real distribution of reservoir rock characteristics. Materials and methods. The approach described in the work allows to eliminate such effects by identifying integrated rock types that control the static properties and dynamic behavior of the reservoir, while optimally linking with geological characteristics (diagenetic transformations, sedimentation features, as well as their union effect) and petrophysical characteristics (reservoir properties, relationship between the porosity and permeability, water saturation, radius of pore channels and others). The integrated algorithm consists of 8 steps, allowing the output to obtain rock-types in the maximum possible way connecting together all the characteristics of the rock, available initial information. The first test in the Middle East field confirmed the applicability of this technique. Results. The result of the work was the creation of a software product (certificate of state registration of the computer program “Lucia”, registration number 2021612075 dated 02/11/2021), which allows automating the process of identifying rock types in order to quickly select the most optimal method, as well as the possibility of their integration. As part of the product, machine learning technologies were introduced to predict rock types based on well logs in intervals not covered by coring studies, as well as in wells in which there is no coring.

2021 ◽  
Vol 11 (4) ◽  
pp. 1577-1595
Author(s):  
Rasoul Ranjbar-Karami ◽  
Parisa Tavoosi Iraj ◽  
Hamzeh Mehrabi

AbstractKnowledge of initial fluids saturation has great importance in hydrocarbon reservoir analysis and modelling. Distribution of initial water saturation (Swi) in 3D models dictates the original oil in place (STOIIP), which consequently influences reserve estimation and dynamic modelling. Calculation of initial water saturation in heterogeneous carbonate reservoirs always is a challenging task, because these reservoirs have complex depositional and diagenetic history with a complex pore network. This paper aims to model the initial water saturation in a pore facies framework, in a heterogeneous carbonate reservoir. Petrographic studies were accomplished to define depositional facies, diagenetic features and pore types. Accordingly, isolated pores are dominant in the upper parts, while the lower intervals contain more interconnected interparticle pore types. Generally, in the upper and middle parts of the reservoir, diagenetic alterations such as cementation and compaction decreased the primary reservoir potential. However, in the lower interval, which mainly includes high-energy shoal facies, high reservoir quality was formed by primary interparticle pores and secondary dissolution moulds and vugs. Using huge number of primary drainage mercury injection capillary pressure tests, we evaluate the ability of FZI, r35Winland, r35Pittman, FZI* and Lucia’s petrophysical classes in definition of rock types. Results show that recently introduced rock typing method is an efficient way to classify samples into petrophysical rock types with same pore characteristics. Moreover, as in this study MICP data were available from every one meter of reservoir interval, results show that using FZI* method much more representative sample can be selected for SCAL laboratory tests, in case of limitation in number of SCAL tests samples. Integration of petrographic analyses with routine (RCAL) and special (SCAL) core data resulted in recognition of four pore facies in the studied reservoir. Finally, in order to model initial water saturation, capillary pressure data were averaged in each pore facies which was defined by FZI* method and using a nonlinear curve fitting approach, fitting parameters (M and C) were extracted. Finally, relationship between fitting parameters and porosity in core samples was used to model initial water saturation in wells and between wells. As permeability prediction and reservoir rock typing are challenging tasks, findings of this study help to model initial water saturation using log-derived porosity.


2016 ◽  
Vol 1 (1) ◽  
pp. 43 ◽  
Author(s):  
Sugeng Sapto Surjono ◽  
Indra Arifianto

Hydrocarbon potential within Upper Plover Formation in the Field “A” has not been produced due to unclear in understanding of reservoir problem. This formation consists of heterogeneous reservoir rock with their own physical characteristics. Reservoir characterization has been done by applying rock typing (RT) method utilizing wireline logs data to obtain reservoir properties including clay volume, porosity, water saturation, and permeability. Rock types are classified on the basis of porosity and permeability distribution from routines core analysis (RCAL) data. Meanwhile, conventional core data is utilized to depositional environment interpretations. This study also applied neural network methods to rock types analyze for intervals reservoir without core data. The Upper Plover Formation in the study area indicates potential reservoir distributes into 7 parasequences. Their were deposited during transgressive systems in coastal environments (foreshore - offshore) with coarsening upward pattern during Middle to Late Jurassic. The porosity of reservoir ranges from 1–19 % and permeability varies from 0.01 mD to 1300 mD. Based on the facies association and its physical properties from rock typing analysis, the reservoir within Upper Plover Formation can be grouped into 4 reservoir class: Class A (Excellent), Class B (Good), Class C (Poor), and Class D (Very Poor). For further analysis, only class A-C are considered as potential reservoir, and the remain is neglected.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Peiqing Lian ◽  
Cuiyu Ma ◽  
Bingyu Ji ◽  
Taizhong Duan ◽  
Xuequn Tan

There are many types of carbonate reservoir rock spaces with complex shapes, and their primary pore structure changes dramatically. In order to describe the heterogeneity of K carbonate reservoir, equations of porosity, permeability and pore throat radii under different mercury injection saturations are fitted, and it shows that 30% is the best percentile. R30 method is presented for rock typing, and six rock types are divided according to R30 value of plugs. The porosity-permeability relationship is established for each rock type, and their relevant flow characteristics of each rock type have been studied. Logs are utilized to predict rock types of noncored wells, and a three-dimensional (3D) rock type model has been established based on the well rock type curves and the sedimentary facies constraint. Based on the relationship between J function and water saturation, the formula of water saturation, porosity, permeability, and oil column height can be obtained by multiple regressions for each rock type. Then, the water saturation is calculated for each grid, and a 3D water saturation model is established. The model can reflect the formation heterogeneity and the fluid distribution, and its accuracy is verified by the history matching.


2020 ◽  
pp. 2640-2650
Author(s):  
Sarah Taboor Wali ◽  
Hussain Ali Baqer

Nasiriyah oilfield is located in the southern part of Iraq. It represents one of the promising oilfields. Mishrif Formation is considered as the main oil-bearing carbonate reservoir in Nasiriyah oilfield, containing heavy oil (API 25o(. The study aimed to calculate and model the petrophysical properties and build a three dimensional geological model for Mishrif Formation, thus estimating the oil reserve accurately and detecting the optimum locations for hydrocarbon production. Fourteen vertical oil wells were adopted for constructing the structural and petrophysical models. The available well logs data, including density, neutron, sonic, gamma ray, self-potential, caliper and resistivity logs were used to calculate the petrophysical properties. The interpretations and environmental corrections of these logs were performed by applying Techlog 2015 software. According to the petrophysical properties analysis, Mishrif Formation was divided into five units (Mishrif Top, MA, shale bed, MB1 and MB2).    A three-dimensional geological model, which represents an entrance for the simulation process to predict reservoir behavior under different hydrocarbon recovery scenarios, was carried out by employing Petrel 2016 software. Models for reservoir characteristics (porosity, permeability, net to gross NTG and water saturation) were created using the algorithm of Sequential Gaussian Simulation (SGS), while the variogram analysis was utilized as an aid to distribute petrophysical properties among the wells.      The process showed that the main reservoir unit of Mishrif Formation is MB1 with a high average porosity of 20.88% and a low average water saturation of 16.9%. MB2 unit has good reservoir properties characterized by a high average water saturation of 96.25%, while MA was interpreted as a water-bearing unit. The impermeable shale bed unit is intercalated between MA and MB1 units with a thickness of 5-18 m, whereas Mishrif top was interpreted as a cap unit. The study outcomes demonstrated that the distribution accuracy of the petrophysical properties has a significant impact on the constructed geological model which provided a better understanding of the study area’s geological construction. Thus, the estimated reserve h was calculated to be about 7945 MSTB. This can support future reservoir development plans and performance predictions. 


Author(s):  
Sadonya Jamal Mustafa ◽  
Fraidoon Rashid ◽  
Khalid Mahmmud Ismail

Permeability is considered as an efficient parameter for reservoir modelling and simulation in different types of rocks. The performance of a dynamic model for estimation of reservoir properties based on liquid permeability has been widely established for reservoir rocks. Consequently, the validated module can be applied into another reservoir type with examination of the validity and applicability of the outcomes. In this study the heterogeneous carbonate reservoir rock samples of the Tertiary Baba Formation have been collected to create a new module for estimation of the brine permeability from the corrected gas permeability. In addition, three previously published equations of different reservoir rock types were evaluated using the heterogenous carbonate samples. The porosity and permeability relationships, permeability distribution, pore system and rock microstructures are the dominant factors that influenced on the limitation of these modules for calculating absolute liquid permeability from the klinkenberg-corrected permeability. The most accurate equation throughout the selected samples in this study was the heterogenous module and the lowest quality permeability estimation was derived from the sandstone module.


2021 ◽  
Author(s):  
Mohamed Masoud ◽  
W. Scott Meddaugh ◽  
Masoud Eljaroshi ◽  
Khaled Elghanduri

Abstract The Harash Formation was previously known as the Ruaga A and is considered to be one of the most productive reservoirs in the Zelten field in terms of reservoir quality, areal extent, and hydrocarbon quantity. To date, nearly 70 wells were drilled targeting the Harash reservoir. A few wells initially naturally produced but most had to be stimulated which reflected the field drilling and development plan. The Harash reservoir rock typing identification was essential in understanding the reservoir geology implementation of reservoir development drilling program, the construction of representative reservoir models, hydrocarbons volumetric calculations, and historical pressure-production matching in the flow modelling processes. The objectives of this study are to predict the permeability at un-cored wells and unsampled locations, to classify the reservoir rocks into main rock typing, and to build robust reservoir properties models in which static petrophysical properties and fluid properties are assigned for identified rock type and assessed the existed vertical and lateral heterogeneity within the Palaeocene Harash carbonate reservoir. Initially, an objective-based workflow was developed by generating a training dataset from open hole logs and core samples which were conventionally and specially analyzed of six wells. The developed dataset was used to predict permeability at cored wells through a K-mod model that applies Neural Network Analysis (NNA) and Declustring (DC) algorithms to generate representative permeability and electro-facies. Equal statistical weights were given to log responses without analytical supervision taking into account the significant log response variations. The core data was grouped on petrophysical basis to compute pore throat size aiming at deriving and enlarging the interpretation process from the core to log domain using Indexation and Probabilities of Self-Organized Maps (IPSOM) classification model to develop a reliable representation of rock type classification at the well scale. Permeability and rock typing derived from the open-hole logs and core samples analysis are the main K-mod and IPSOM classification model outputs. The results were propagated to more than 70 un-cored wells. Rock typing techniques were also conducted to classify the Harash reservoir rocks in a consistent manner. Depositional rock typing using a stratigraphic modified Lorenz plot and electro-facies suggest three different rock types that are probably linked to three flow zones. The defined rock types are dominated by specifc reservoir parameters. Electro-facies enables subdivision of the formation into petrophysical groups in which properties were assigned to and were characterized by dynamic behavior and the rock-fluid interaction. Capillary pressure and relative permeability data proved the complexity in rock capillarity. Subsequently, Swc is really rock typing dependent. The use of a consistent representative petrophysical rock type classification led to a significant improvement of geological and flow models.


Author(s):  
Mahmoud Leila ◽  
Ali Eslam ◽  
Asmaa Abu El-Magd ◽  
Lobna Alwaan ◽  
Ahmed Elgendy

Abstract The Messinian Abu Madi Formation represents the most prospective reservoir target in the Nile Delta. Hydrocarbon exploration endeavors in Nile Delta over the last few decades highlighted some uncertainties related to the predictability and distribution of the Abu Madi best reservoir quality facies. Therefore, this study aims at delineating the factors controlling the petrophysical heterogeneity of the Abu Madi reservoir facies in Faraskour Field, northeastern onshore part of the Nile Delta. This work provides the very first investigation on the reservoir properties of Abu Madi succession outside the main canyon system. In the study area, Abu Madi reservoir is subdivided into two sandstone units (lower fluvial and upper estuarine). Compositionally, quartzose sandstones (quartz > 65%) are more common in the fluvial unit, whereas the estuarine sandstones are often argillaceous (clays > 15%) and glauconitic (glauconite > 10%). The sandstones were classified into four reservoir rock types (RRTI, RRTII, RRTIII, and RRTIV) having different petrophysical characteristics and fluid flow properties. RRTI hosts the quartzose sandstones characterized by mega pore spaces (R35 > 45 µm) and a very well-connected, isotropic pore system. On the other side, RRTIV constitutes the lowest reservoir quality argillaceous sandstones containing meso- and micro-sized pores (R35 > 5 µm) and a pore system dominated by dead ends. Irreducible water saturation increases steadily from RRTI (Swir ~ 5%) to RRTIV (Swir > 20%). Additionally, the gas–water two-phase co-flowing characteristics decrease significantly from RRTI to RRTIV facies. The gaseous hydrocarbons will be able to flow in RRTI facies even at water saturation values exceeding 90%. On the other side, the gas will not be able to displace water in RRTIV sandstones even at water saturation values as low as 40%. Similarly, the influence of confining pressure on porosity and permeability destruction significantly increases from RRTI to RRTIV. Accordingly, RRTI facies are the best reservoir targets and have high potentiality for primary porosity preservation.


2007 ◽  
Vol 10 (06) ◽  
pp. 730-739 ◽  
Author(s):  
Genliang Guo ◽  
Marlon A. Diaz ◽  
Francisco Jose Paz ◽  
Joe Smalley ◽  
Eric A. Waninger

Summary In clastic reservoirs in the Oriente basin, South America, the rock-quality index (RQI) and flow-zone indicator (FZI) have proved to be effective techniques for rock-type classifications. It has long been recognized that excellent permeability/porosity relationships can be obtained once the conventional core data are grouped according to their rock types. Furthermore, it was also observed from this study that the capillary pressure curves, as well as the relative permeability curves, show close relationships with the defined rock types in the basin. These results lead us to believe that if the rock type is defined properly, then a realistic permeability model, a unique set of relative permeability curves, and a consistent J function can be developed for a given rock type. The primary purpose of this paper is to demonstrate the procedure for implementing this technique in our reservoir modeling. First, conventional core data were used to define the rock types for the cored intervals. The wireline log measurements at the cored depths were extracted, normalized, and subsequently analyzed together with the calculated rock types. A mathematical model was then built to predict the rock type in uncored intervals and in uncored wells. This allows the generation of a synthetic rock-type log for all wells with modern log suites. Geostatistical techniques can then be used to populate the rock type throughout a reservoir. After rock type and porosity are populated properly, the permeability can be estimated by use of the unique permeability/porosity relationship for a given rock type. The initial water saturation for a reservoir can be estimated subsequently by use of the corresponding rock-type, porosity, and permeability models as well as the rock-type-based J functions. We observed that a global permeability multiplier became unnecessary in our reservoir-simulation models when the permeability model is constructed with this technique. Consistent initial-water-saturation models (i.e., calculated and log-measured water saturations are in excellent agreement) can be obtained when the proper J function is used for a given rock type. As a result, the uncertainty associated with volumetric calculations is greatly reduced as a more accurate initial-water-saturation model is used. The true dynamic characteristics (i.e., the flow capacity) of the reservoir are captured in the reservoir-simulation model when a more reliable permeability model is used. Introduction Rock typing is a process of classifying reservoir rocks into distinct units, each of which was deposited under similar geological conditions and has undergone similar diagenetic alterations (Gunter et al. 1997). When properly classified, a given rock type is imprinted by a unique permeability/porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993). As a result, when properly applied, rock typing can lead to the accurate estimation of formation permeability in uncored intervals and in uncored wells; reliable generation of initial-water-saturation profile; and subsequently, the consistent and realistic simulation of reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993; Porras and Campos 2001; Jennings and Lucia 2001; Rincones et al. 2000; Soto et al. 2001) presented in the literature, two techniques (RQI/FZI and Winland's R35) appear to be used more widely than the others for clastic reservoirs (Gunter et al. 1997, Amaefule et al. 1993). In the RQI/FZI approach (Amaefule et al. 1993), rock types are classified with the following three equations: [equations]


2006 ◽  
Vol 9 (06) ◽  
pp. 681-687 ◽  
Author(s):  
Shawket G. Ghedan ◽  
Bertrand M. Thiebot ◽  
Douglas A. Boyd

Summary Accurately modeling water-saturation variation in transition zones is important to reservoir simulation for predicting recoverable oil and guiding field-development plans. The large transition zone of a heterogeneous Middle East reservoir was challenging to model. Core-calibrated, log-derived water saturations were used to generate saturation-height-function groups for nine reservoir-rock types. To match the large span of log water saturation (Sw) in the transition zone from the free-water level (FWL) to minimum Sw high in the oil column, three saturation-height functions per rock type (RT) were developed, one each for the low-, medium-, and high-porosity range. Though developed on a different scale from the simulation-model cells, the saturation profiles generated are a good statistical match to the wireline-log-interpreted Sw, and bulk volume of water (BVW) and fluid volumetrics agree with the geological model. RT-guided saturation-height functions proved a good method for modeling water saturation in the simulation model. The technique emphasizes the importance of oil/brine capillary pressures measured under reservoir conditions and of collecting an adequate number of Archie saturation and cementation exponents to reduce uncertainties in well-log interpretation. Introduction The heterogeneous carbonate reservoir in this study is composed of both limestone and dolomite layers frequently separated by non-reservoir anhydrite layers (Ghedan et al. 2002). Because of its heterogeneity, this reservoir, like other carbonate reservoirs, contains long saturation-transition zones of significant sizes. Transition zones are conventionally defined as that part of the reservoir between the FWL and the level at which water saturation reaches a minimum near-constant (irreducible water saturation, Swirr) high in the reservoir (Masalmeh 2000). For the purpose of this paper, however, we define transition zones as those parts of the reservoir between the FWL and the dry-oil limit (DOL), where both water and oil are mobile irrespective of the saturation level. Both water and oil are mobile in the transition zone, while only oil is mobile above the transition zone. By either definition, the oil/water transition zone contains a sizable part of this field's oil in place. Predicting the amount of recoverable oil in a transition zone through simulation depends on (among other things) the distribution of initial oil saturation as a function of depth as well as the mobility of the oil in these zones (Masalmeh 2000). Therefore, the characterization of transition zones in terms of original water and oil distribution has a potentially large effect on reservoir recoverable reserves and, in turn, reservoir economics.


2006 ◽  
Vol 9 (03) ◽  
pp. 209-216 ◽  
Author(s):  
William W. Weiss ◽  
Xina Xie ◽  
Jason Weiss ◽  
Vishu Subramanian ◽  
Archie R. Taylor ◽  
...  

Summary Following a series of laboratory imbibition-cell experiments, field tests were conducted to determine the effectiveness of surfactant-soak treatments as a single-well enhanced-oil-recovery (EOR) technique. The tests were conducted in the dolomite interval of the Phosphoria formation. Artificial intelligence was applied to analyze the mixed test results. The analysis suggested that the gamma ray log can be used to predict results and that a minimum amount of surfactant is required to improve production. Introduction Water imbibition as a recovery process was tested in the Spraberry field during the 1950s (Elkins and Skov 1962, 1963). This early work was followed by a test of the process in Cottonwood Creek field during the 1960s (Willingham and McCaleb 1967). Around the time of these field tests, a patent was issued (Graham et al. 1957) that suggested surfactants could enhance the imbibition recovery process. A later patent (Stone et al. 1970) implied that a Spraberry field test was designed, but results were not reported. Forty years later, researchers (Spindler et al. 2000; Standnes and Austad 2000; Chen et al. 2000) returned to the subject of wettability alteration. One description of a field test of the surfactant-soak process has been published (Chen et al. 2000). A great deal of effort was expended during the 1970s and 1980s in designing systems and field testing surfactant fluids with ultralow interfacial tensions (IFTs) as a flooding EOR process. Maintaining the integrity of the chemical slug from the injection well to the producing wells was fraught with problems. However, slug-integrity problems are diminished in single-well EOR applications. Recent laboratory work focused on the easily performed and interpreted imbibition-cell experiments. These experiments (with and without surfactants) and the reported success of pressure pulsing at Cottonwood Creek prompted further laboratory testing with reservoir rock and fluids (Xie 2002; Xie et al. 2004). This recent work indicated that a nonionic surfactant could substantially increase recovery from Phosphoria wells in the Cottonwood Creek field. The shallow-shelf carbonate reservoir is characterized as a steeply dipping, algal reef of the Phosphoria formation producing sour, 27°API, black oil from a dolomitized interval. Thickness of the dolomite varies from 20 to 100 ft. The average porosity is ~10% with ~1.0 md matrix permeability. The connate-water saturation is ~10%. Pan American Petroleum reported the low-pressure and low-temperature reservoir to be naturally fractured and oil-wet (Willingham and McCaleb 1967). Their description was based on laboratory core studies. Tests performed in the 1990s generated U.S. Bureau of Mines (USBM) wettability values of -0.1, -0.12, -0.18, and -0.26. The Cottonwood Creek field is located in the Bighorn basin of Wyoming, as shown in Fig. 1, and is operated by Continental Resources Inc.


Sign in / Sign up

Export Citation Format

Share Document