scholarly journals Water uptake and chemical composition of fresh aerosols generated in open burning of biomass

2010 ◽  
Vol 10 (11) ◽  
pp. 5165-5178 ◽  
Author(s):  
C. M. Carrico ◽  
M. D. Petters ◽  
S. M. Kreidenweis ◽  
A. P. Sullivan ◽  
G. R. McMeeking ◽  
...  

Abstract. As part of the Fire Lab at Missoula Experiments (FLAME) in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH) conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA) for dry particle sizes of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0

2017 ◽  
Author(s):  
Xiaowei Wang ◽  
Bo Jing ◽  
Fang Tan ◽  
Jiabi Ma ◽  
Yunhong Zhang ◽  
...  

Abstract. Although water uptake of aerosols plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of aerosols are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form oxalic acid dihydrate at 77 % relative humidity (RH), and further lose crystalline water to convert into anhydrous oxalic acid around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA/AS droplets with OIRs of 1:3, 1:1 and 3:1 is 34.4 ± 2.0 % RH, 44.3 ± 2.5 % RH and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the partial deliquescence relative humidity (DRH) for mixed OA/AS particles with OIR of 1:3 and 1:1 is observed to occur at 81.1 ± 1.5 % RH and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA/AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols after slow dehydration process in the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA/AS particles with 3:1 ratio exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into nonhygroscopic NH4HC2O4. Although the hygroscopic growth of mixed OA/AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA/AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA/AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.


2017 ◽  
Author(s):  
Jing Chen ◽  
Sri Hapsari Budisulistiorini ◽  
Masayuki Itoh ◽  
Wen-Chien Lee ◽  
Takuma Miyakawa ◽  
...  

Abstract. The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using the humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ 


2014 ◽  
Vol 14 (2) ◽  
pp. 737-749 ◽  
Author(s):  
K. A. Kamilli ◽  
L. Poulain ◽  
A. Held ◽  
A. Nowak ◽  
W. Birmili ◽  
...  

Abstract. Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site Laboratoire d'Hygiène de la Ville de Paris (LHVP) in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m−3, e.g., during winter.


2017 ◽  
Vol 17 (20) ◽  
pp. 12797-12812 ◽  
Author(s):  
Xiaowei Wang ◽  
Bo Jing ◽  
Fang Tan ◽  
Jiabi Ma ◽  
Yunhong Zhang ◽  
...  

Abstract. Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA ∕ AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA ∕ AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA ∕ AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA ∕ AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA ∕ AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth factors of mixed particles after deliquescence are substantially lower than those of mixed OA ∕ AS droplets during the efflorescence process and further decrease with elevated OA content. The discrepancies for Raman growth factors of mixed OA ∕ AS particles between the dehydration and hydration process at high RH can be attributed to the significant formation of NH4HC2O4 and residual OA, which remain solid at high RH and thus result in less water uptake of mixed particles. These findings improve the understanding of the role of reactions between dicarboxylic acid and inorganic salt in the chemical and physical properties of aerosol particles, and might have important implications for atmospheric chemistry.


2013 ◽  
Vol 13 (23) ◽  
pp. 11769-11789 ◽  
Author(s):  
M. R. Alfarra ◽  
N. Good ◽  
K. P. Wyche ◽  
J. F. Hamilton ◽  
P. S. Monks ◽  
...  

Abstract. We demonstrate that the water uptake properties derived from sub- and super-saturated measurements of chamber-generated biogenic secondary organic aerosol (SOA) particles are independent of their degree of oxidation, determined using both online and offline methods. SOA particles are formed from the photooxidation of five structurally different biogenic VOCs, representing a broad range of emitted species and their corresponding range of chemical reactivity: α-pinene, β-caryophyllene, limonene, myrcene and linalool. The fractional contribution of mass fragment 44 to the total organic signal (f44) is used to characterise the extent of oxidation of the formed SOA as measured online by an aerosol mass spectrometer. Results illustrate that the values of f44 are dependent on the precursor, the extent of photochemical ageing as well as on the initial experimental conditions. SOA generated from a single biogenic precursor should therefore not be used as a general proxy for biogenic SOA. Similarly, the generated SOA particles exhibit a range of hygroscopic properties, depending on the precursor, its initial mixing ratio and photochemical ageing. The activation behaviour of the formed SOA particles show no temporal trends with photochemical ageing. The average κ values derived from the HTDMA and CCNc are generally found to cover the same range for each precursor under two different initial mixing ratio conditions. A positive correlation is observed between the hygroscopicity of particles of a single size and f44 for α-pinene, β-caryophyllene, linalool and myrcene, but not for limonene SOA. The investigation of the generality of this relationship reveals that α-pinene, limonene, linalool and myrcene are all able to generate particles with similar hygroscopicity (κHTDMA ~0.1) despite f44 exhibiting a relatively wide range of values (~4 to 11%). Similarly, κCCN is found to be independent of f44. The same findings are also true when sub- and super-saturated water uptake properties of SOA are compared to the averaged carbon oxidation state (OSC) determined using an offline method. These findings do not necessarily suggest that water uptake and chemical composition are not related. Instead, they suggest that either f44 and OSC do not represent the main dominant composition-related factors controlling water uptake of SOA particles, or they may emphasise the possible impact of semi-volatile compounds on limiting the ability of current state-of-the-art techniques to determine the chemical composition and water uptake properties of aerosol particles.


2010 ◽  
Vol 10 (2) ◽  
pp. 3627-3658 ◽  
Author(s):  
C. M. Carrico ◽  
M. D. Petters ◽  
S. M. Kreidenweis ◽  
A. P. Sullivan ◽  
G. R. McMeeking ◽  
...  

Abstract. As part of the Fire Lab at Missoula Experiments (FLAME) in 2006–2007, we examined hygroscopic properties of particles emitted from open combustion of 33 select biomass fuels. Measurements of humidification growth factors for subsaturated water relative humidity (RH) conditions were made with a hygroscopic tandem differential mobility analyzer (HTDMA) for dry particle diameters of 50, 100 and 250 nm. Results were then fit to a single-parameter model to obtain the hygroscopicity parameter, κ. Particles in freshly emitted biomass smoke exhibited a wide range of hygroscopicity (individual modes with 0<κ<1.0), spanning a range from the hygroscopicity of fresh diesel soot emissions to that of pure inorganic salts commonly found in the ambient aerosol. Smoke aerosols dominated by carbonaceous species typically had a unimodal growth factor with corresponding mean κ=0.1 (range of 0<κ<0.4). Those with a substantial inorganic mass fraction typically separated into less- and more-hygroscopic modes at high RH, the latter with mean κ=0.4 (range of 0.1<κ<1). The bimodal κ distributions were indicative of smoke chemical heterogeneity at a single particle size, whereas heterogeneity as a function of size was indicated by typically decreasing κ values with increasing dry particle diameters. Hygroscopicity varied strongly with biomass fuel type and, to a lesser extent, with combustion conditions. Among the most hygroscopic smokes were those from palmetto, rice straw, and sawgrass, while smoke particles from coniferous species such as spruces, firs, pines, and duffs were among the least hygroscopic. Overall, hygroscopicity decreased with increasing ratios of total carbon to inorganic ions as measured in PM2.5 filter samples. Despite aerosol heterogeneity, reconstructions of κ using PM2.5 bulk chemical composition data fell along a 1:1 line with measured ensemble κ values.


2013 ◽  
Vol 13 (5) ◽  
pp. 14297-14330
Author(s):  
K. A. Kamilli ◽  
L. Poulain ◽  
A. Held ◽  
A. Nowak ◽  
W. Birmili ◽  
...  

Abstract. Aerosol hygroscopic growth factors and chemical properties were measured as part of the MEGAPOLI "Megacities Plume Case Study" at the urban site LHVP in the city center of Paris from June to August 2009, and from January to February 2010. Descriptive hygroscopic growth factors (DGF) were derived in the diameter range from 25 to 350 nm at relative humidities of 30, 55, 75, and 90% by applying the summation method on humidified and dry aerosol size distributions measured simultaneously with a humidified differential mobility particle sizer (HDMPS) and a twin differential mobility particle sizer (TDMPS). For 90% relative humidity, the DGF varied from 1.06 to 1.46 in summer, and from 1.06 to 1.66 in winter. Temporal variations in the observed mean DGF could be well explained with a simple growth model based on the aerosol chemical composition measured by aerosol mass spectrometry (AMS) and black carbon photometry (MAAP). In particular, good agreement was observed when sulfate was the predominant inorganic factor. A clear overestimation of the predicted growth factor was found when the nitrate mass concentration exceeded values of 10 μg m3, e.g. during winter.


2020 ◽  
Vol 13 (10) ◽  
pp. 5551-5567
Author(s):  
Ting Lei ◽  
Nan Ma ◽  
Juan Hong ◽  
Thomas Tuch ◽  
Xin Wang ◽  
...  

Abstract. Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and aerosol flow rates (±1 %), high accuracy of the differential mobility analyzer (DMA) voltage (±0.1 %) in the range of ∼0–50 V is crucial for achieving accurate sizing and small sizing offsets between the two DMAs (<1.4 %). To maintain a stable relative humidity (RH), the humidification system and the second DMA are placed in a well-insulated and air conditioner housing (±0.1 K). We also tested and discussed different ways of preventing predeliquescence in the second DMA. Our measurement results for ammonium sulfate nanoparticles are in good agreement with Biskos et al. (2006b), with no significant size effect on the deliquescence and efflorescence relative humidity (DRH and ERH, respectively) at diameters down to 6 nm. For sodium sulfate nanoparticles, however, we find a pronounced size dependence of DRH and ERH between 20 and 6 nm nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document