scholarly journals Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide

2011 ◽  
Vol 11 (8) ◽  
pp. 3713-3730 ◽  
Author(s):  
C. D. Nevison ◽  
E. Dlugokencky ◽  
G. Dutton ◽  
J. W. Elkins ◽  
P. Fraser ◽  
...  

Abstract. Seasonal cycles in the mixing ratios of tropospheric nitrous oxide (N2O) are derived by detrending long-term measurements made at sites across four global surface monitoring networks. The detrended monthly data display large interannual variability, which at some sites challenges the concept of a "mean" seasonal cycle. In the Northern Hemisphere, correlations between polar winter lower stratospheric temperature and detrended N2O data, around the month of the seasonal minimum, provide empirical evidence for a stratospheric influence, which varies in strength from year to year and can explain much of the interannual variability in the surface seasonal cycle. Even at sites where a strong, competing, regional N2O source exists, such as from coastal upwelling at Trinidad Head, California, the stratospheric influence must be understood to interpret the biogeochemical signal in monthly mean data. In the Southern Hemisphere, detrended surface N2O monthly means are correlated with polar spring lower stratospheric temperature in months preceding the N2O minimum, providing empirical evidence for a coherent stratospheric influence in that hemisphere as well, in contrast to some recent atmospheric chemical transport model (ACTM) results. Correlations between the phasing of the surface N2O seasonal cycle in both hemispheres and both polar lower stratospheric temperature and polar vortex break-up date provide additional support for a stratospheric influence. The correlations discussed above are generally more evident in high-frequency in situ data than in data from weekly flask samples. Furthermore, the interannual variability in the N2O seasonal cycle is not always correlated among in situ and flask networks that share common sites, nor do the mean seasonal amplitudes always agree. The importance of abiotic influences such as the stratospheric influx and tropospheric transport on N2O seasonal cycles suggests that, at sites remote from local sources, surface N2O mixing ratio data by themselves are unlikely to provide information about seasonality in surface sources, e.g., for atmospheric inversions, unless the ACTMs employed in the inversions accurately account for these influences. An additional abioitc influence is the seasonal ingassing and outgassing of cooling and warming surface waters, which creates a thermal signal in tropospheric N2O that is of particular importance in the extratropical Southern Hemisphere, where it competes with the biological ocean source signal.

2010 ◽  
Vol 10 (11) ◽  
pp. 25803-25839
Author(s):  
C. D. Nevison ◽  
E. Dlugokencky ◽  
G. Dutton ◽  
J. W. Elkins ◽  
P. Fraser ◽  
...  

Abstract. Seasonal cycles in the mixing ratios of tropospheric nitrous oxide (N2O) are derived by detrending long-term measurements made at sites across four global surface monitoring networks. These cycles are examined for physical and biogeochemical signals. The detrended monthly data display large interannual variability, which at some sites challenges the concept of a "mean" seasonal cycle. The interannual variability in the seasonal cycle is not always correlated among networks that share common sites. In the Northern Hemisphere, correlations between detrended N2O seasonal minima and polar winter lower stratospheric temperature provide compelling evidence for a stratospheric influence, which varies in strength from year to year and can explain much of the interannual variability in the surface seasonal cycle. Even at sites where a strong, competing, regional N2O source exists, such as from coastal upwelling at Trinidad Head, California, the stratospheric influence must be understood in order to interpret the biogeochemical signal in monthly mean data. In the Southern Hemisphere, detrended surface N2O monthly means are correlated with polar lower stratospheric temperature in months preceding the N2O minimum, suggesting a coherent stratospheric influence in that hemisphere as well. A decomposition of the N2O seasonal cycle in the extratropical Southern Hemisphere suggests that ventilation of deep ocean water (microbially enriched in N2O) and the stratospheric influx make similar contributions in phasing, and may be difficult to disentangle. In addition, there is a thermal signal in N2O due to seasonal ingassing and outgassing of cooling and warming surface waters that is out of phase and thus competes with the stratospheric and ventilation signals. All the seasonal signals discussed above are subtle and are generally better quantified in high-frequency in situ data than in data from weekly flask samples, especially in the Northern Hemisphere. The importance of abiotic influences (thermal, stratospheric influx, and tropospheric transport) on N2O seasonal cycles suggests that, at many sites, surface N2O mixing ratio data by themselves are unlikely to provide information about seasonality in surface sources (e.g., for atmospheric inversions), but may be more powerful if combined with complementary data such as CFC-12 mixing ratios or N2O isotopes.


2020 ◽  
Vol 117 (22) ◽  
pp. 11954-11960 ◽  
Author(s):  
Simon Yang ◽  
Bonnie X. Chang ◽  
Mark J. Warner ◽  
Thomas S. Weber ◽  
Annie M. Bourbonnais ◽  
...  

Assessment of the global budget of the greenhouse gas nitrous oxide (N2O) is limited by poor knowledge of the oceanicN2O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatologicalN2O emissions from the ocean by training a supervised learning algorithm with over 158,000N2O measurements from the surface ocean—the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots ofN2O flux and reveals a vigorous global seasonal cycle. We estimate an annual meanN2O flux of 4.2 ± 1.0 Tg N⋅y−1, 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. ThisN2O flux ranges from a low of 3.3 ± 1.3 Tg N⋅y−1in the boreal spring to a high of 5.5 ± 2.0 Tg N⋅y−1in the boreal summer. Much of the seasonal variations in globalN2O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the globalN2O flux to El Niño–Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmosphericN2O budget.


2007 ◽  
Vol 85 (11) ◽  
pp. 1287-1300 ◽  
Author(s):  
H Bencherif ◽  
L El Amraoui ◽  
N Semane ◽  
S Massart ◽  
D Vidyaranya Charyulu ◽  
...  

Following an exceptionally active winter, the 2002 Southern Hemisphere (SH) major warming occurred in late September. It was preceded by three minor warming events that occurred in late August and early September, and yielded vortex split and break-down over Antarctica. Ozone (O3 and nitrous oxide (N2O) profiles obtained during that period of time (15 August – 4 October) by the Sub-Millimetre Radiometer (SMR) aboard the Odin satellite are assimilated into MOCAGE (Modélisation Isentrope du transport Mésoéchelle de l'Ozone Stratosphérique par Advection), a global three-dimensional chemistry transport model of Météo-France. The assimilated algorithm is a three-dimensional-FGAT built by the European Centre for Research and Advance Training in Scientific Computation (CERFACS) using the PALM (Projet d'Assimilation par Logiciel Multi-méthode) software. The assimilated O3 and N2O profiles and isentropic distributions are compared to ground-based measurements (LIDAR and balloon-sonde) and to maps of advected potential vorticity (APV). The latter is computed by the MIMOSA (Modélisation Isentrope du transport Mésoéchelle de l'Ozone Stratosphérique par Advection) model, a high-resolution advection transport model, using meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). It is found that O3 concentrations retrieved by the MOCAGE–PALM assimilation system show a reasonably good agreement in the 20–28 km height range when compared with ground-based profiles. This altitude range corresponds to the intersection between the MOCAGE levels (0–28 km) and SMR O3 retrievals (20–50 km). Moreover, comparison of N2O assimilated fields with MIMOSA APV maps indicates that the dramatic split and subsequent break-down of the polar vortex, as well as the associated mixing of mid- and low-latitude stratospheric air, are well resolved and pictured by MOCAGE–PALM. The present study demonstrates also that the tremendous dynamics and associated polar vortex deformations during the 2002-austral-winter have modified ozone and nitrous oxide distributions not only at the vicinity of the polar vortex, but over topics and subtropics as well. PACS Nos.: 92.60.H–, 92.60.Hd, 92.70.Cp, 92.70.Gt


2019 ◽  
Vol 12 (2) ◽  
pp. 1393-1408 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Kelley C. Wells ◽  
Dylan B. Millet ◽  
Corinne Vigouroux ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas and it can also generate nitric oxide, which depletes ozone in the stratosphere. It is a common target species of ground-based Fourier transform infrared (FTIR) near-infrared (TCCON) and mid-infrared (NDACC) measurements. Both TCCON and NDACC networks provide a long-term global distribution of atmospheric N2O mole fraction. In this study, the dry-air column-averaged mole fractions of N2O (XN2O) from the TCCON and NDACC measurements are compared against each other at seven sites around the world (Ny-Ålesund, Sodankylä, Bremen, Izaña, Réunion, Wollongong, Lauder) in the time period of 2007–2017. The mean differences in XN2O between TCCON and NDACC (NDACC–TCCON) at these sites are between −3.32 and 1.37 ppb (−1.1 %–0.5 %) with standard deviations between 1.69 and 5.01 ppb (0.5 %–1.6 %), which are within the uncertainties of the two datasets. The NDACC N2O retrieval has good sensitivity throughout the troposphere and stratosphere, while the TCCON retrieval underestimates a deviation from the a priori in the troposphere and overestimates it in the stratosphere. As a result, the TCCON XN2O measurement is strongly affected by its a priori profile. Trends and seasonal cycles of XN2O are derived from the TCCON and NDACC measurements and the nearby surface flask sample measurements and compared with the results from GEOS-Chem model a priori and a posteriori simulations. The trends and seasonal cycles from FTIR measurement at Ny-Ålesund and Sodankylä are strongly affected by the polar winter and the polar vortex. The a posteriori N2O fluxes in the model are optimized based on surface N2O measurements with a 4D-Var inversion method. The XN2O trends from the GEOS-Chem a posteriori simulation (0.97±0.02 (1σ) ppb yr−1) are close to those from the NDACC (0.93±0.04 ppb yr−1) and the surface flask sample measurements (0.93±0.02 ppb yr−1). The XN2O trend from the TCCON measurements is slightly lower (0.81±0.04 ppb yr−1) due to the underestimation of the trend in TCCON a priori simulation. The XN2O trends from the GEOS-Chem a priori simulation are about 1.25 ppb yr−1, and our study confirms that the N2O fluxes from the a priori inventories are overestimated. The seasonal cycles of XN2O from the FTIR measurements and the model simulations are close to each other in the Northern Hemisphere with a maximum in August–October and a minimum in February–April. However, in the Southern Hemisphere, the modeled XN2O values show a minimum in February–April while the FTIR XN2O retrievals show different patterns. By comparing the partial column-averaged N2O from the model and NDACC for three vertical ranges (surface–8, 8–17, 17–50 km), we find that the discrepancy in the XN2O seasonal cycle between the model simulations and the FTIR measurements in the Southern Hemisphere is mainly due to their stratospheric differences.


2021 ◽  
Author(s):  
Vilma Kangasaho ◽  
Aki Tsuruta ◽  
Leif Backman ◽  
Pyry Mäkinen ◽  
Sander Houweling ◽  
...  

Abstract. This study investigates the contribution of different CH4 sources to the seasonal cycle of 𝛿13C during years 2000–2012 using the TM5 atmospheric transport model. The seasonal cycles of anthropogenic emissions from two versions of the EDGAR inventories, v4.3.2 and v5.0 are examined. Those includes emissions from Enteric Fermentation and Manure Management (EFMM), rice cultivation and residential sources. Those from wetlands obtained from LPX-Bern v1.4 are also examined in addition to other sources such as fires and ocean sources. We use spatially varying isotopic source signatures for EFMM, coal, oil and gas, wetlands, fires and geological emission and for other sources a global uniform value. We analysed the results as zonal means for 30° latitudinal bands. Seasonal cycles of 𝛿13C are found to be an inverse of CH4 cycles in general, with a peak-to-peak amplitude of 0.07–0.26 ‰. However, due to emissions, the phase ellipses do not form straight lines, and the anti-correlations between CH4 and 𝛿13C are weaker (−0.35 to −0.91) in north of 30° S. We found that wetland emissions are the dominant driver in the 𝛿13C seasonal cycle in the Northern Hemisphere and Tropics, such that the timing of 𝛿13C seasonal minimum is shifted by ∼90 days in 60° N–90° N from the end of the year to the beginning of the year when seasonality of wetland emissions is removed. The results also showed that in the Southern Hemisphere Tropics, emissions from fires contribute to the enrichment of 𝛿13C in July–October. In addition, we also compared the results against observations from the South Pole, Antarctica, Alert, Nunavut, Canada and Niwot Ridge, Colorado, USA. In light of this research, comparison to the observation showed that the seasonal cycle of EFMM emissions in EDGAR v5.0 inventory is more realistic than in v4.3.2. In addition, the comparison at Alert showed that modelled 𝛿13C amplitude was approximately half of the observations, mainly because the model could not reproduce the strong depletion in autumn. This indicates that CH4 emission magnitude and seasonal cycle of wetlands may need to be revised. Results from Niwot Ridge indicate that in addition to biogenic emissions, the proportion of biogenic to fossil based emissions may need to be revised.


2018 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Kelley C. Wells ◽  
Dylan B. Millet ◽  
Corinne Vigouroux ◽  
...  

Abstract. Nitrous oxide (N2O) is an important greenhouse gas and it can also generate nitric oxide, which depletes ozone in the stratosphere. It is a common target species of ground-based FTIR near-infrared (TCCON) and mid-infrared (NDACC) measurements. Both TCCON and NDACC networks provide a long-term global distribution of atmospheric N2O mole fraction. In this study, the dry-air column averaged mole fraction of N2O (XN2O) from the TCCON and NDACC measurements are compared against each other at seven sites around the world (Ny-Ålesund, Sodankylä, Bremen, Izaña, Reunion Island, Wollongong, Lauder) in the time period of 2007–2017. The mean differences in XN2O between the TCCON and NDACC (NDACC-TCCON) at these sites are between −3.32 and 1.37 ppb (−1.1–0.5 %) with the standard deviations between 1.69 and 5.01 ppb (0.5–1.6 %), which are within the uncertainties of the two datasets. The NDACC N2O retrieval has good sensitivity throughout the troposphere and stratosphere, while the TCCON retrieval underestimates a deviation from the a priori in the troposphere and overestimates it in the stratosphere. As a result, the TCCON XN2O measurement is strongly affected by its a priori profile. Trends and seasonal cycles of XN2O are derived from the TCCON and NDACC measurements and the nearby surface flask sample measurements, and compared with the results from GEOS-Chem model a priori and a posteriori simulations. The a posteriori N2O fluxes in the model are optimized based on surface N2O measurements with a 4D-Var inversion method. The XN2O trends from the GEOS-Chem a posteriori simulation are very close to those from the NDACC and the surface flask sample measurements (0.9–1.0 ppb/year). The XN2O trends from the TCCON measurements are slightly lower (0.8–0.9 ppb/year) due to the underestimation of the trend in TCCON a priori. The XN2O trends from the GEOS-Chem a priori simulation are about 1.25 ppb/year, and our study confirms that the N2O fluxes from the a priori inventories are overestimated. The seasonal cycles of XN2O from the FTIR measurements and the model simulations are close to each other in the Northern Hemisphere with a maximum in August–October and a minimum in February–April. However, in the Southern Hemisphere, the modeled XN2O shows a minimum in February–April while the FTIR XN2O retrievals shows a minimum in August–October. By comparing the partial column averaged N2O from the model and NDACC for three vertical ranges (surface–8, 8–17, 17–50 km), we find that the discrepancy in the XN2O seasonal cycle between the model simulations and the FTIR measurements in the Southern Hemisphere is mainly due to their stratospheric differences.


2012 ◽  
Vol 25 (5) ◽  
pp. 1759-1772 ◽  
Author(s):  
Paul J. Young ◽  
Karen H. Rosenlof ◽  
Susan Solomon ◽  
Steven C. Sherwood ◽  
Qiang Fu ◽  
...  

Seasonally and vertically resolved changes in the strength of the Brewer–Dobson circulation (BDC) were inferred using temperatures measured by the Microwave Sounding Unit (MSU), Stratospheric Sounding Unit (SSU), and radiosondes. Linear trends in an empirically derived “BDC index” (extratropical minus tropical temperatures), over 1979–2005, were found to be consistent with a significant strengthening of the Northern Hemisphere (NH) branch of the BDC during December throughout the depth of the stratosphere. Trends in the same index suggest a significant strengthening of the Southern Hemisphere branch of the BDC during August through to the midstratosphere, as well as a significant weakening during March in the NH lower stratosphere. Such trends, however, are only significant if it is assumed that interannual variability due to the BDC can be removed by regression of the tropics against the extratropics and vice versa (i.e., exploiting the out-of-phase nature of tropical and extratropical temperatures as demonstrated by previous studies of temperature and the BDC). The possibility that the apparent lower-stratosphere BDC December strengthening and March weakening could point to a change in the seasonal cycle of the circulation is also explored. The differences between a 1979–91 average and 1995–2005 average tropical temperature seasonal cycle in lower-stratospheric MSU data show an apparent shift in the minimum from February to January, consistent with a change in the timing of the maximum wave driving. Additionally, the importance of decadal variability in shaping the overall trends is highlighted, in particular for the suggested March BDC weakening, which may now be strengthening from a minimum in the 1990s.


2008 ◽  
Vol 8 (6) ◽  
pp. 1635-1648 ◽  
Author(s):  
M. Gil ◽  
M. Yela ◽  
L. N. Gunn ◽  
A. Richter ◽  
I. Alonso ◽  
...  

Abstract. Daily NO2 vertical column density (VCD) has been routinely measured by zenith sky spectroscopy at the subtropical station of Izaña (28° N, 16° W) since 1993 in the framework of the Network for the Detection of Atmospheric Composition Change (NDACC). Based on 14 years of data the first low latitude NO2 VCD climatology has been established and the main characteristics from short timescales of one day to interannual variability are presented. Instrumental descriptions and different sources of errors are described in detail. The observed diurnal cycle follows that expected by gas-phase NOx chemistry, as can be shown by the good agreement with a vertically integrated chemical box model, and is modulated by solar radiation. The seasonal evolution departs from the phase of the hours of daylight, indicating the signature of upper stratospheric temperature changes. From the data record (1993–2006) no significant long-term trends in NO2 VCD can be inferred. Comparison of the ground-based data sets with nadir-viewing satellite spectrometers shows excellent agreement for SCIAMACHY with differences between both datasets of 1.1%. GOME displays unrealistic features with the largest discrepancies during summer. The ground-based data are compared with long-term output of the SLIMCAT 3-D chemical transport model (CTM). The basic model, forced by ECMWF (ERA-40) analyses, captures the observed NO2 annual cycle but significantly underestimates the spring/summer maximum (by 12% at sunset and up to 25% at sunrise). In a model run which uses assimilation of satellite CH4 profiles to constrain the model long-lived tracers the agreement is significantly improved. This improvement in modelled column NO2 is due to better modelled NOy profiles and points to transport errors in the ECMWF ERA-40 reanalyses.


2012 ◽  
Vol 367 (1593) ◽  
pp. 1245-1255 ◽  
Author(s):  
Alina Freing ◽  
Douglas W. R. Wallace ◽  
Hermann W. Bange

We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N 2 O) to estimate the concentration of biologically produced N 2 O and N 2 O production rates in the ocean on a global scale. Our approach to estimate the N 2 O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N 2 O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N 2 O are not taken into account in our study. The largest amount of subsurface N 2 O is produced in the upper 500 m of the water column. The estimated global annual subsurface N 2 O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr −1 . This is in agreement with estimates of the global N 2 O emissions to the atmosphere and indicates that a N 2 O source in the mixed layer is unlikely. The potential future development of the oceanic N 2 O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.


Sign in / Sign up

Export Citation Format

Share Document