scholarly journals Role of emission sources and atmospheric sink on the seasonal cycle of CH<sub>4</sub> and δ<sup>13</sup>-CH<sub>4</sub>: analysis based on the atmospheric chemistry transport model TM5

2021 ◽  
Author(s):  
Vilma Kangasaho ◽  
Aki Tsuruta ◽  
Leif Backman ◽  
Pyry Mäkinen ◽  
Sander Houweling ◽  
...  

Abstract. This study investigates the contribution of different CH4 sources to the seasonal cycle of 𝛿13C during years 2000–2012 using the TM5 atmospheric transport model. The seasonal cycles of anthropogenic emissions from two versions of the EDGAR inventories, v4.3.2 and v5.0 are examined. Those includes emissions from Enteric Fermentation and Manure Management (EFMM), rice cultivation and residential sources. Those from wetlands obtained from LPX-Bern v1.4 are also examined in addition to other sources such as fires and ocean sources. We use spatially varying isotopic source signatures for EFMM, coal, oil and gas, wetlands, fires and geological emission and for other sources a global uniform value. We analysed the results as zonal means for 30° latitudinal bands. Seasonal cycles of 𝛿13C are found to be an inverse of CH4 cycles in general, with a peak-to-peak amplitude of 0.07–0.26 ‰. However, due to emissions, the phase ellipses do not form straight lines, and the anti-correlations between CH4 and 𝛿13C are weaker (−0.35 to −0.91) in north of 30° S. We found that wetland emissions are the dominant driver in the 𝛿13C seasonal cycle in the Northern Hemisphere and Tropics, such that the timing of 𝛿13C seasonal minimum is shifted by ∼90 days in 60° N–90° N from the end of the year to the beginning of the year when seasonality of wetland emissions is removed. The results also showed that in the Southern Hemisphere Tropics, emissions from fires contribute to the enrichment of 𝛿13C in July–October. In addition, we also compared the results against observations from the South Pole, Antarctica, Alert, Nunavut, Canada and Niwot Ridge, Colorado, USA. In light of this research, comparison to the observation showed that the seasonal cycle of EFMM emissions in EDGAR v5.0 inventory is more realistic than in v4.3.2. In addition, the comparison at Alert showed that modelled 𝛿13C amplitude was approximately half of the observations, mainly because the model could not reproduce the strong depletion in autumn. This indicates that CH4 emission magnitude and seasonal cycle of wetlands may need to be revised. Results from Niwot Ridge indicate that in addition to biogenic emissions, the proportion of biogenic to fossil based emissions may need to be revised.

2018 ◽  
Vol 18 (24) ◽  
pp. 17895-17907 ◽  
Author(s):  
Oscar B. Dimdore-Miles ◽  
Paul I. Palmer ◽  
Lori P. Bruhwiler

Abstract. We consider the utility of the annual inter-polar difference (IPD) as a metric for changes in Arctic emissions of methane (CH4). The IPD has been previously defined as the difference between weighted annual means of CH4 mole fraction data collected at stations from the two polar regions (defined as latitudes poleward of 53∘ N and 53∘ S, respectively). This subtraction approach (IPD) implicitly assumes that extra-polar CH4 emissions arrive within the same calendar year at both poles. We show using a continuous version of the IPD that the metric includes not only changes in Arctic emissions but also terms that represent atmospheric transport of air masses from lower latitudes to the polar regions. We show the importance of these atmospheric transport terms in understanding the IPD using idealized numerical experiments with the TM5 global 3-D atmospheric chemistry transport model that is run from 1980 to 2010. A northern mid-latitude pulse in January 1990, which increases prior emission distributions, arrives at the Arctic with a higher mole fraction and ≃12 months earlier than at the Antarctic. The perturbation at the poles subsequently decays with an e-folding lifetime of ≃4 years. A similarly timed pulse emitted from the tropics arrives with a higher value at the Antarctic ≃11 months earlier than at the Arctic. This perturbation decays with an e-folding lifetime of ≃7 years. These simulations demonstrate that the assumption of symmetric transport of extra-polar emissions to the poles is not realistic, resulting in considerable IPD variations due to variations in emissions and atmospheric transport. We assess how well the annual IPD can detect a constant annual growth rate of Arctic emissions for three scenarios, 0.5 %, 1 %, and 2 %, superimposed on signals from lower latitudes, including random noise. We find that it can take up to 16 years to detect the smallest prescribed trend in Arctic emissions at the 95 % confidence level. Scenarios with higher, but likely unrealistic, growth in Arctic emissions are detected in less than a decade. We argue that a more reliable measurement-driven approach would require data collected from all latitudes, emphasizing the importance of maintaining a global monitoring network to observe decadal changes in atmospheric greenhouse gases.


2018 ◽  
Vol 18 (7) ◽  
pp. 4549-4566 ◽  
Author(s):  
Luke Surl ◽  
Paul I. Palmer ◽  
Gonzalo González Abad

Abstract. We interpret HCHO column variations observed by the Ozone Monitoring Instrument (OMI), aboard the NASA Aura satellite, over India during 2014 using the GEOS-Chem atmospheric chemistry and transport model. We use a nested version of the model with a horizontal resolution of approximately 25 km. HCHO columns are related to local emissions of volatile organic compounds (VOCs) with a spatial smearing that increases with the VOC lifetime. Over India, HCHO has biogenic, pyrogenic, and anthropogenic VOC sources. Using a 0-D photochemistry model, we find that isoprene has the largest molar yield of HCHO which is typically realized within a few hours. We also find that forested regions that neighbour major urban conurbations are exposed to high levels of nitrogen oxides. This results in depleted hydroxyl radical concentrations and a delay in the production of HCHO from isoprene oxidation. We find that propene is the only anthropogenic VOC emitted in major Indian cities that produces HCHO at a comparable (but slower) rate to isoprene. The GEOS-Chem model reproduces the broad-scale annual mean HCHO column distribution observed by OMI (r = 0.6), which is dominated by a distinctive meridional gradient in the northern half of the country, and by localized regions of high columns that coincide with forests. Major discrepancies are noted over the Indo-Gangetic Plain (IGP) and Delhi. We find that the model has more skill at reproducing observations during winter (JF) and pre-monsoon (MAM) months with Pearson correlations r > 0.5 but with a positive model bias of  ≃ 1×1015 molec cm−2. During the monsoon season (JJAS) we reproduce only a diffuse version of the observed meridional gradient (r = 0.4). We find that on a continental scale most of the HCHO column seasonal cycle is explained by monthly variations in surface temperature (r = 0.9), suggesting a role for biogenic VOCs, in agreement with the 0-D and GEOS-Chem model calculations. We also find that the seasonal cycle during 2014 is not significantly different from the 2008 to 2015 mean seasonal variation. There are two main loci for biomass burning (the states of Punjab and Haryana, and northeastern India), which we find makes a significant contribution (up to 1×1015 molec cm−2) to observed HCHO columns only during March and April over northeastern India. The slow production of HCHO from propene oxidation results in a smeared hotspot over Delhi that we resolve only on an annual mean timescale by using a temporal oversampling method. Using a linear regression model to relate GEOS-Chem isoprene emissions to HCHO columns we infer seasonal isoprene emissions over two key forest regions from the OMI HCHO column data. We find that the a posteriori emissions are typically lower than the a priori emissions, with a much stronger reduction of emissions during the monsoon season. We find that this reduction in emissions during monsoon months coincides with a large drop in satellite observations of leaf phenology that recovers in post monsoon months. This may signal a forest-scale response to monsoon conditions.


2017 ◽  
Author(s):  
Luke Surl ◽  
Paul I. Palmer ◽  
Gonzalo González Abad

Abstract. We interpret HCHO column variations observed by the Ozone Monitoring Instrument (OMI), aboard the NASA Aura satellite, over India during 2014 using the GEOS-Chem atmospheric chemistry and transport model. We use a nested version of the model with a spatial resolution of approximately 25 km. HCHO columns are related to local emissions of volatile organic compounds (VOCs) with a spatial smearing that increases with the VOC lifetime. Over India, HCHO has biogenic, pyrogenic, and anthropogenic VOC sources. Using a 0-D photochemistry model, we find that isoprene has the largest molar yield of HCHO that is typically realized within a few hours. We find that forested regions that neighbours major urban conurbations are exposed to high levels of nitrogen oxides. This results in depleted hydroxyl radical concentrations and a delay in the production of HCHO from isoprene oxidation. We find that propene is the only anthropogenic VOC emitted in major Indian cities that produces HCHO at a comparable (slower) rate to isoprene. The GEOS-Chem model reproduces the broadscale annual mean HCHO column distribution observed by OMI (r = 0.6), which is dominated by a distinctive meridional gradient in the northern half of the country, and by localized regions of high columns that coincide with forests. Major discrepancies are over the Indo-Gangetic Plain and Delhi. We find that the model has more skill at reproducing observations during winter (JF) and pre-monsoon (MAM) months with Pearson correlations r > 0.5 but with a positive model bias of 1 × 1015 molec/cm2. During the monsoon season (JJAS) we reproduce only a diffuse version of the observed meridional gradient (r = 0.4). Generally, we find that on a continental scale most of the seasonal cycle is explained by monthly variations in surface temperature (r = 0.9), suggesting a strong role for biogenic VOCs, in agreement with the 0-D and GEOS-Chem model calculations. We also find that the seasonal cycle during 2014 is not significantly different from the 2008–2015 mean seasonal variation but there are large year to year variations. There are two main loci for biomass burning (states of Punjab and Haryana, and northeastern India), which we find only contributes a significant contribution (up to 1 × 1015 molec/cm2) to observed HCHO columns during March to April over northeastern India. The slow production of HCHO from propene oxidation results in a smeared hotspot over Delhi that we resolve only on an annual mean timescale by using a temporal oversampling method. Using a linear regression model to relate GEOS-Chem isoprene emissions to HCHO columns we infer seasonal isoprene emissions over two key forest regions from the OMI HCHO column data. We find that the a posteriori emissions are typically lower than the a priori emissions, with a much stronger reduction of emissions during the monsoon season. We find that this reduction in emissions during monsoon months coincides with a large drop in satellite observations of leaf phenology that recovers in post monsoon months. This may signal a forest-scale response to monsoon conditions.


2010 ◽  
Vol 10 (7) ◽  
pp. 18025-18061 ◽  
Author(s):  
L. Feng ◽  
P. I. Palmer ◽  
Y. Yang ◽  
R. M. Yantosca ◽  
S. R. Kawa ◽  
...  

Abstract. We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003–2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modelling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman filter to estimate a posteriori biospheric+biomass burning (BS+BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom 3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS+BB+OC CO2 fluxes over 2004–2006 for GEOS-4 (GEOS-5) meteorology are −4.4±0.9 (−4.2±0.9), −3.9±0.9 (−4.5±0.9), and −5.2±0.9 (−4.9±0.9) Pg C yr−1 , respectively. The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992–1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91–2.43 ppm yr−1, depending on latitude, within 0.15 ppm yr−1 (0.2 ppm yr−1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper troposphere but can be biased by up to 4–5 ppm in the boundary layer at the start and end of the growing season. The model has a small negative bias in the free troposphere CO2 trend (1.95–2.19 ppm yr−1) compared to AIRS data which has a trend of 2.21–2.63 ppm yr−1 during 2004–2006, consistent with surface data. Model CO2 concentrations in the upper troposphere, evaluated using CONTRAIL (Comprehensive Observation Network for TRace gases by AIrLiner) aircraft measurements, reproduce the magnitude and phase of the seasonal cycle of CO2 in both hemispheres. We generally find that the GEOS meteorology reproduces much of the observed tropospheric CO2 variability, suggesting that these meteorological fields will help make significant progress in understanding carbon fluxes as more data become available.


2011 ◽  
Vol 11 (1) ◽  
pp. 1429-1455 ◽  
Author(s):  
S.-M. Salmi ◽  
P. T. Verronen ◽  
L. Thölix ◽  
E. Kyrölä ◽  
L. Backman ◽  
...  

Abstract. We use the 3-D FinROSE chemistry transport model (CTM) and ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations to study the connection between atmospheric dynamics and NOx descent during early 2009 in the northern polar region. We force the model NOx at 80 km poleward of 60° N with ACE-FTS observations and then compare the model results with observations at lower altitudes. Low geomagnetic indices indicate absence of local NOx production in early 2009, which gives a good opportunity to study the effects of atmospheric transport on polar NOx. No in-situ production of NOx by energetic particle precipitation is therefore included. This is the first model study using ECMWF (The European Centre for Medium-Range Weather Forecasts) data up to 80 km and simulating the exceptional winter of 2009 with one of the strongest major sudden stratospheric warmings (SSW). The model results show a strong NOx descent in February–March 2009 from the upper mesosphere to the stratosphere after the major SSW. Both observations and model results suggest an increase of NOx to 150–200 ppb (i.e. by factor of 50) at 65 km due to the descent following the SSW. The model, however, underestimates the amount of NOx around 55 km by 40–60 ppb. The results also show that the chemical loss of NOx was insignificant i.e. NOx was mainly controlled by the dynamics. Both ACE-FTS observations and FinROSE show a decrease of ozone of 20–30% at 30–50 km after mid-February to mid-March. However, these changes are not related to the NOx descent, but are due to activation of the halogen chemistry.


2009 ◽  
Vol 9 (21) ◽  
pp. 8531-8543 ◽  
Author(s):  
Q. Li ◽  
P. I. Palmer ◽  
H. C. Pumphrey ◽  
P. Bernath ◽  
E. Mahieu

Abstract. We use the GEOS-Chem global 3-D chemistry transport model to investigate the relative importance of chemical and physical processes that determine observed variability of hydrogen cyanide (HCN) in the troposphere and lower stratosphere. Consequently, we reconcile ground-based FTIR column measurements of HCN, which show annual and semi-annual variations, with recent space-borne measurements of HCN mixing ratio in the tropical lower stratosphere, which show a large two-year variation. We find that the observed column variability over the ground-based stations is determined by a superposition of HCN from several regional burning sources, with GEOS-Chem reproducing these column data with a positive bias of 5%. GEOS-Chem reproduces the observed HCN mixing ratio from the Microwave Limb Sounder and the Atmospheric Chemistry Experiment satellite instruments with a mean negative bias of 20%, and the observed HCN variability with a mean negative bias of 7%. We show that tropical biomass burning emissions explain most of the observed HCN variations in the upper troposphere and lower stratosphere (UTLS), with the remainder due to atmospheric transport and HCN chemistry. In the mid and upper stratosphere, atmospheric dynamics progressively exerts more influence on HCN variations. The extent of temporal overlap between African and other continental burning seasons is key in establishing the apparent bienniel cycle in the UTLS. Similar analysis of other, shorter-lived trace gases have not observed the transition between annual and bienniel cycles in the UTLS probably because the signal of inter-annual variations from surface emission has been diluted before arriving at the lower stratosphere (LS), due to shorter atmospheric lifetimes.


2018 ◽  
Vol 18 (20) ◽  
pp. 15307-15327 ◽  
Author(s):  
Nikolaos Evangeliou ◽  
Rona L. Thompson ◽  
Sabine Eckhardt ◽  
Andreas Stohl

Abstract. This paper presents the results of BC inversions at high northern latitudes (> 50° N) for the 2013–2015 period. A sensitivity analysis was performed to select the best representative species for BC and the best a priori emission dataset. The same model ensemble was used to assess the uncertainty of the a posteriori emissions of BC due to scavenging and removal and due to the use of different a priori emission inventory. A posteriori concentrations of BC simulated over Arctic regions were compared with independent observations from flight and ship campaigns showing, in all cases, smaller bias, which in turn witnesses the success of the inversion. The annual a posteriori emissions of BC at latitudes above 50° N were estimated as 560±171 kt yr−1, significantly smaller than in ECLIPSEv5 (745 kt yr−1), which was used and the a priori information in the inversions of BC. The average relative uncertainty of the inversions was estimated to be 30 %.A posteriori emissions of BC in North America are driven by anthropogenic sources, while biomass burning appeared to be less significant as it is also confirmed by satellite products. In northern Europe, a posteriori emissions were estimated to be half compared to the a priori ones, with the highest releases to be in megacities and due to biomass burning in eastern Europe. The largest emissions of BC in Siberia were calculated along the transect between Yekaterinsburg and Chelyabinsk. The optimised emissions of BC were high close to the gas flaring regions in Russia and in western Canada (Alberta), where numerous power and oil and gas production industries operate. Flaring emissions in Nenets–Komi oblast (Russia) were estimated to be much lower than in the a priori emissions, while in Khanty-Mansiysk (Russia) they remained the same after the inversions of BC. Increased emissions at the borders between Russia and Mongolia are probably due to biomass burning in villages along the Trans-Siberian Railway. The maximum BC emissions in high northern latitudes (> 50° N) were calculated for summer months due to biomass burning and they are controlled by seasonal variations in Europe and Asia, while North America showed a much smaller variability.


2002 ◽  
Vol 2 (4) ◽  
pp. 1261-1286 ◽  
Author(s):  
P. Jöckel ◽  
C. A. M. Brenninkmeijer ◽  
P. J. Crutzen

Abstract. The global hydroxyl radical distribution largely determines the oxidation efficiency of the atmosphere and, together with their sources and atmospheric transport, the distributions and lifetimes of most trace gases. Because of the great importance of several of these gases for climate, ozone budget and OH itself, it is of fundamental importance to acquire knowledge about atmospheric OH and possible trends in its concentrations. In the past, average concentrations of OH and trends were largely derived using industrially produced CH3CCl3 as a chemical tracer. The analyses have given valuable, but also rather uncertain results. In this paper we describe an idealized computer aided tracer experiment which has as one of its goals to derive tracer concentration weighted, global average <k(OH)>, where he temporal and spatial OH distribution is prescribed and k is the reaction rate coefficient of OH with a hitherto never produced (Gedanken) tracer, which is injected at a number of surface sites in the atmosphere in well known amounts over a given time period. Using a three-dimensional (3D) time-dependent chemistry/transport model <k(OH)> can be accurately determined from the calculated 3-D tracer distribution. It is next explored how well <k(OH)> can be retrieved solely from tracer measurements at a limited number of surface sites. The results from this analysis are encouraging enough to actually think about the feasibility to carry out a global dedicated tracer experiment to derive <k(OH)> and its temporal trends. However, before that, we propose to test the methods which are used to derive <k(OH)>, so far largely using CH3CCl3, with an idealized tracer experiment, in which a global model is used to calculate the "Gedanken"  tracer distribution, representing the real 3-D world, from which we next derive <k(OH)>, using only the tracer information from a limited set of surface sites. We propose here that research groups which are, or will be, involved in global average OH studies to participate in such an inter-comparison of methods, organized and over-seen by a committee appointed by the International Global Atmospheric Chemistry (IGAC) program.


2021 ◽  
Vol 21 (22) ◽  
pp. 16661-16687
Author(s):  
Nicole Jacobs ◽  
William R. Simpson ◽  
Kelly A. Graham ◽  
Christopher Holmes ◽  
Frank Hase ◽  
...  

Abstract. Satellite-based observations of atmospheric carbon dioxide (CO2) provide measurements in remote regions, such as the biologically sensitive but undersampled northern high latitudes, and are progressing toward true global data coverage. Recent improvements in satellite retrievals of total column-averaged dry air mole fractions of CO2 (XCO2) from the NASA Orbiting Carbon Observatory 2 (OCO-2) have allowed for unprecedented data coverage of northern high-latitude regions, while maintaining acceptable accuracy and consistency relative to ground-based observations, and finally providing sufficient data in spring and autumn for analysis of satellite-observed XCO2 seasonal cycles across a majority of terrestrial northern high-latitude regions. Here, we present an analysis of XCO2 seasonal cycles calculated from OCO-2 data for temperate, boreal, and tundra regions, subdivided into 5∘ latitude by 20∘ longitude zones. We quantify the seasonal cycle amplitudes (SCAs) and the annual half drawdown day (HDD). OCO-2 SCAs are in good agreement with ground-based observations at five high-latitude sites, and OCO-2 SCAs show very close agreement with SCAs calculated for model estimates of XCO2 from the Copernicus Atmosphere Monitoring Services (CAMS) global inversion-optimized greenhouse gas flux model v19r1 and the CarbonTracker2019 model (CT2019B). Model estimates of XCO2 from the GEOS-Chem CO2 simulation version 12.7.2 with underlying biospheric fluxes from CarbonTracker2019 (GC-CT2019) yield SCAs of larger magnitude and spread over a larger range than those from CAMS, CT2019B, or OCO-2; however, GC-CT2019 SCAs still exhibit a very similar spatial distribution across northern high-latitude regions to that from CAMS, CT2019B, and OCO-2. Zones in the Asian boreal forest were found to have exceptionally large SCA and early HDD, and both OCO-2 data and model estimates yield a distinct longitudinal gradient of increasing SCA from west to east across the Eurasian continent. In northern high-latitude regions, spanning latitudes from 47 to 72∘ N, longitudinal gradients in both SCA and HDD are at least as pronounced as latitudinal gradients, suggesting a role for global atmospheric transport patterns in defining spatial distributions of XCO2 seasonality across these regions. GEOS-Chem surface contact tracers show that the largest XCO2 SCAs occur in areas with the greatest contact with land surfaces, integrated over 15–30 d. The correlation of XCO2 SCA with these land surface contact tracers is stronger than the correlation of XCO2 SCA with the SCA of CO2 fluxes or the total annual CO2 flux within each 5∘ latitude by 20∘ longitude zone. This indicates that accumulation of terrestrial CO2 flux during atmospheric transport is a major driver of regional variations in XCO2 SCA.


Sign in / Sign up

Export Citation Format

Share Document