scholarly journals Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009

2011 ◽  
Vol 11 (2) ◽  
pp. 705-721 ◽  
Author(s):  
J. C. Turnbull ◽  
A. Karion ◽  
M. L. Fischer ◽  
I. Faloona ◽  
T. Guilderson ◽  
...  

Abstract. Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio) from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO2ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2ff from atmospheric radiocarbon measurements shows that CO2ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2, and indicates the potential to constrain CO2ff emissions if transport uncertainties are reduced.

2010 ◽  
Vol 10 (9) ◽  
pp. 21567-21613 ◽  
Author(s):  
J. C. Turnbull ◽  
A. Karion ◽  
M. L. Fischer ◽  
I. Faloona ◽  
T. Guilderson ◽  
...  

Abstract. Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in-situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of additional greenhouse gases including hydrocarbons and halocarbons were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases. For most other trace species, there are substantial differences between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14±2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio) from the difference of total and fossil CO2. The resulting CO2bio varies substantially between air in the urban plume and the surrounding boundary layer air. Finally, we use the in situ estimates of CO2ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. However the resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2ff from atmospheric radiocarbon measurements shows that CO2ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2, and indicates the potential to constrain the CO2ff emissions if transport uncertainties are reduced.


Radiocarbon ◽  
2018 ◽  
Vol 60 (5) ◽  
pp. 1285-1299 ◽  
Author(s):  
István Major ◽  
László Haszpra ◽  
László Rinyu ◽  
István Futó ◽  
Árpád Bihari ◽  
...  

AbstractIn 2008, the atmospheric CO2 measurements at the Hegyhátsál rural tower station were extended further by 14CO2 air sampling from two elevations (115 and 10 m a.g.l.), in cooperation with HEKAL (ICER). Since then, a complete six-year-long (2008–2014) dataset of atmospheric CO2, Δ14C, fossil, and modern CO2 excess (relative to Jungfraujoch) has been assembled and evaluated. Based on our results, the annual mean CO2 mole fraction rose at both elevations in this period. The annual mean Δ14CO2 values decreased with a similar average annual decline. Based on our comparison, planetary boundary layer height obtained by modeling has a larger influence on the variation of mole fraction of CO2 (relative to Jungfraujoch), than on its carbon isotopic composition, i.e. the boundary layer rather represents a physical constraint. Fossil fuel CO2 excess at both elevations can rather be observed in wintertime and mainly due to the increased anthropogenic emission of nearby cities in the region. The mean modern CO2 excess at both elevations was even larger in winter, but it drastically decreased at 115 m by summer, while it remained at the winter level at 10 m.


2021 ◽  
Author(s):  
Jutta Kesti ◽  
John Backman ◽  
Ewan James O'Connor ◽  
Anne Hirsikko ◽  
Eija Asmi ◽  
...  

Abstract. Aerosol particles play an important in role in the microphysics of clouds and hence on their likelihood to precipitate. In the changing climate already dry areas such as the United Arab Emirates (UAE) are predicted to become even drier. Comprehensive observations of the daily and seasonal variation in aerosol particle properties in such locations are required reducing the uncertainty in such predictions. We analyse observations from a one-year measurement campaign at a background location in the United Arab Emirates to investigate the properties of aerosol particles in this region, study the impact of boundary layer mixing on background aerosol particle properties measured at the surface and study the temporal evolution of the aerosol particle cloud formation potential in the region. We used in-situ aerosol particle measurements to characterise the aerosol particle composition, size, number and cloud condensation nuclei (CCN) properties, in-situ SO2 measurements as an anthropogenic signature and a long-range scanning Doppler lidar to provide vertical profiles of the horizontal wind and turbulent properties to monitor the evolution of the boundary layer. Anthropogenic sulphate dominated the aerosol particle mass composition in this location. There was a clear diurnal cycle in the surface wind direction, which had a strong impact on aerosol particle total number concentration, SO2 concentration and black carbon mass concentration. Local sources were the predominant source of black carbon, as concentrations clearly depended on the presence of turbulent mixing, with much higher values during calm nights. The measured concentrations of SO2, instead, were highly dependent on the surface wind direction as well as on the depth of the boundary layer when entrainment from the advected elevated layers occurred. The wind direction at the surface or of the elevated layer suggests that the cities of Dubai, Abu Dhabi and other coastal conurbations were the remote sources of SO2. We observed new aerosol particle formation events almost every day (on four days out of five on average). Calm nights had the highest CCN number concentrations and lowest κ values and activation fractions. We did not observe any clear dependence of CCN number concentration and κ parameter on the height of the daytime boundary layer, whereas the activation fraction did show a slight increase with increasing boundary layer height, due to the change in the shape of the aerosol particle size distribution where the relative portion of larger aerosol particles increased with increasing boundary layer height. We believe that this indicates that size is more important than chemistry for aerosol particle CCN activation at this site. The combination of instrumentation used in this campaign enabled us to identify periods when anthropogenic pollution from remote sources that had been transported in elevated layers was present, and had been mixed down to the surface in the growing boundary layer.


2014 ◽  
Vol 7 (9) ◽  
pp. 3127-3138 ◽  
Author(s):  
R. L. Herman ◽  
J. E. Cherry ◽  
J. Young ◽  
J. M. Welker ◽  
D. Noone ◽  
...  

Abstract. The EOS (Earth Observing System) Aura Tropospheric Emission Spectrometer (TES) retrieves the atmospheric HDO / H2O ratio in the mid-to-lower troposphere as well as the planetary boundary layer. TES observations of water vapor and the HDO isotopologue have been compared with nearly coincident in situ airborne measurements for direct validation of the TES products. The field measurements were made with a commercially available Picarro L1115-i isotopic water analyzer on aircraft over the Alaskan interior boreal forest during the three summers of 2011 to 2013. TES special observations were utilized in these comparisons. The TES averaging kernels and a priori constraints have been applied to the in situ data, using version 5 (V005) of the TES data. TES calculated errors are compared with the standard deviation (1σ) of scan-to-scan variability to check consistency with the TES observation error. Spatial and temporal variations are assessed from the in situ aircraft measurements. It is found that the standard deviation of scan-to-scan variability of TES δD is ±34.1‰ in the boundary layer and ± 26.5‰ in the free troposphere. This scan-to-scan variability is consistent with the TES estimated error (observation error) of 10–18‰ after accounting for the atmospheric variations along the TES track of ±16‰ in the boundary layer, increasing to ±30‰ in the free troposphere observed by the aircraft in situ measurements. We estimate that TES V005 δD is biased high by an amount that decreases with pressure: approximately +123‰ at 1000 hPa, +98‰ in the boundary layer and +37‰ in the free troposphere. The uncertainty in this bias estimate is ±20‰. A correction for this bias has been applied to the TES HDO Lite Product data set. After bias correction, we show that TES has accurate sensitivity to water vapor isotopologues in the boundary layer.


2013 ◽  
Vol 6 (3) ◽  
pp. 719-739 ◽  
Author(s):  
S. Baidar ◽  
H. Oetjen ◽  
S. Coburn ◽  
B. Dix ◽  
I. Ortega ◽  
...  

Abstract. The University of Colorado Airborne Multi-Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (absorption bands at 360, 477, 577, 632 nm) simultaneously in the open atmosphere. The instrument is unique as it (1) features a motion compensation system that decouples the telescope field of view from aircraft movements in real time (<0.35° accuracy), and (2) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system. Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex (California Research at the Nexus of Air Quality and Climate Change) and CARES (Carbonaceous Aerosols and Radiative Effects Study) air quality field campaigns is presented. Horizontal distributions of NO2 VCD (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground-based MAX-DOAS instruments (slope = 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O concentrations and aerosol extinction coefficients, ε, at 477 nm calculated from O4 measurements from a low approach at Brackett airfield inside the South Coast Air Basin (SCAB) are presented. These profiles contain ~12 degrees of freedom (DOF) over a 3.5 km altitude range, an independent information approximately every 250 m. The boundary layer NO2 concentration, and the integral aerosol extinction over height (aerosol optical depth, AOD) agrees well with nearby ground-based in situ NO2 measurement, and AERONET station. The detection limits of NO2, CHOCHO, HCHO, H2O442, &amp;varepsilon;360, &amp;varepsilon;477 for 30 s integration time spectra recorded forward of the plane are 5 ppt, 3 ppt, 100 ppt, 42 ppm, 0.004 km−1, 0.002 km−1 in the free troposphere (FT), and 30 ppt, 16 ppt, 540 ppt, 252 ppm, 0.012 km−1, 0.006 km−1 inside the boundary layer (BL), respectively. Mobile column observations of trace gases and aerosols are complimentary to in situ observations, and help bridge the spatial scales that are probed by satellites and ground-based observations, and predicted by atmospheric models.


2012 ◽  
Vol 12 (2) ◽  
pp. 5771-5801 ◽  
Author(s):  
S. Newman ◽  
S. Jeong ◽  
M. L. Fischer ◽  
X. Xu ◽  
C. L. Haman ◽  
...  

Abstract. Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May–15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin. During CalNex-LA, local fossil fuel combustion contributed up to ~50 % of the observed CO2 enhancement overnight, and ~100 % during midday. This suggests midday column observations over LA, such as those made by satellites relying on reflected sunlight, can be used to track anthropogenic emissions.


2022 ◽  
Vol 22 (1) ◽  
pp. 481-503
Author(s):  
Jutta Kesti ◽  
John Backman ◽  
Ewan J. O'Connor ◽  
Anne Hirsikko ◽  
Eija Asmi ◽  
...  

Abstract. Aerosol particles play an important role in the microphysics of clouds and hence in their likelihood to precipitate. In the changing climate already-dry areas such as the United Arab Emirates (UAE) are predicted to become even drier. Comprehensive observations of the daily and seasonal variation in aerosol particle properties in such locations are required, reducing the uncertainty in such predictions. We analyse observations from a 1-year measurement campaign at a background location in the United Arab Emirates to investigate the properties of aerosol particles in this region, study the impact of boundary layer mixing on background aerosol particle properties measured at the surface, and study the temporal evolution of the aerosol particle cloud formation potential in the region. We used in situ aerosol particle measurements to characterise the aerosol particle composition, size, number, and cloud condensation nuclei (CCN) properties; in situ SO2 measurements as an anthropogenic signature; and a long-range scanning Doppler lidar to provide vertical profiles of the horizontal wind and turbulent properties to monitor the evolution of the boundary layer. Anthropogenic sulfate dominated the aerosol particle mass composition in this location. There was a clear diurnal cycle in the surface wind direction, which had a strong impact on aerosol particle total number concentration, SO2 concentration, and black carbon mass concentration. Local sources were the predominant source of black carbon as concentrations clearly depended on the presence of turbulent mixing, with much higher values during calm nights. The measured concentrations of SO2, instead, were highly dependent on the surface wind direction as well as on the depth of the boundary layer when entrainment from the advected elevated layers occurred. The wind direction at the surface or of the elevated layer suggests that the oil refineries and the cities of Dubai and Abu Dhabi and other coastal conurbations were the remote sources of SO2. We observed new-aerosol-particle formation events almost every day (on 4 d out of 5 on average). Calm nights had the highest CCN number concentrations and lowest κ values and activation fractions. We did not observe any clear dependence of CCN number concentration and κ parameter on the height of the daytime boundary layer, whereas the activation fraction did show a slight increase with increasing boundary layer height due to the change in the shape of the aerosol particle size distribution where the relative portion of larger aerosol particles increased with increasing boundary layer height. We believe that this indicates that size is more important than chemistry for aerosol particle CCN activation at this site. The combination of instrumentation used in this campaign enabled us to identify periods when anthropogenic pollution from remote sources that had been transported in elevated layers was present and had been mixed down to the surface in the growing boundary layer.


2017 ◽  
Author(s):  
Kevin J. Sanchez ◽  
Greg C. Roberts ◽  
Radiance Calmer ◽  
Keri Nicoll ◽  
Eyal Hashimshoni ◽  
...  

Abstract. Top-down and bottom-up aerosol-cloud-radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud-radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top radiative flux (δRF) by between 30 W m−2 and 40 W m−2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is less than 25 W m−2 after accounting for cloud-top entrainment, compared to less than 50 W m−2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m−2, even after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.


2020 ◽  
Author(s):  
Benjamin Schreiner ◽  
Klaus Pfeilsticker ◽  
Flora Kluge ◽  
Meike Rotermund ◽  
Andreas Zahn ◽  
...  

&lt;p&gt;Middle and long-term &amp;#160;photo-chemical effects of local and regional pollution are not well quantified and are an area of active study. NO&lt;sub&gt;x&lt;/sub&gt; (here defined as NO, NO&lt;sub&gt;2&lt;/sub&gt;, and HONO) is a regional pollutant, which influences atmospheric oxidation capacity and ozone formation. Airborne measurements of atmospheric trace gases from the HALO (High Altitude Long Range) aircraft, particularly of NO, NO&lt;sub&gt;2&lt;/sub&gt;, and HONO were performed as part of the EMeRGe (Effect of Megacities on the Transport and Transformation of Pollutants on the Regional to Global Scales) campaign over continental Europe and southeast Asia in July 2017 and April 2018, respectively. NO (and NO&lt;sub&gt;Y&lt;/sub&gt;), O&lt;sub&gt;3&lt;/sub&gt;, and the photolysis frequencies of NO&lt;sub&gt;2&lt;/sub&gt; and HONO were measured in-situ. NO&lt;sub&gt;2&lt;/sub&gt; and HONO were inferred from Limb measurements of the mini-DOAS (Differential Optical Absorption Spectroscopy) instrument, using the novel scaling method (H&amp;#252;neke et al., 2017). These measurements were compared with simulations of the MECO/EMAC models. In relatively polluted air-masses in the boundary layer and free troposphere, HONO measured in excess of model predictions (and previous measurements) suggests an in-situ formation and a significant source of OH as well as a pathway for re-noxification. Aerosol composition simultaneously measured &amp;#160;by the C-Tof-AMS instrument may reveal potential reaction mechanisms to explain the discrepancy.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document