scholarly journals Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

2012 ◽  
Vol 12 (11) ◽  
pp. 5077-5098 ◽  
Author(s):  
S. Gubler ◽  
S. Gruber ◽  
R. S. Purves

Abstract. As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.

2012 ◽  
Vol 12 (1) ◽  
pp. 3357-3407 ◽  
Author(s):  
S. Gubler ◽  
S. Gruber ◽  
R. S. Purves

Abstract. As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent uncertainties is important. In this study we evaluate one parameterization of clear-sky incoming shortwave radiation (SDR) and diverse parameterizations of clear-sky and all-sky incoming longwave radiation (LDR). In a first step, the clear-sky global SDR is estimated based measured input variables and mean parameter values for hourly time steps during the year 1996 to 2008, and validated using the high quality measurements of seven Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations. Then, twelve clear-sky LDR parameterizations are fitted to the ASRB measurements. One of the best performing LDR parameterizations is chosen to estimate the all-sky LDR based on cloud transmissivity. Cloud transmissivity is estimated using measured and modeled global SDR during daytime. For the night, the performance of several interpolation methods is evaluated. Input variable and parameter uncertainties are assigned to estimate the total output uncertainty of the mentioned models, resulting in a mean relative uncertainty of 10% for the clear-sky direct, 15% for diffuse and 2.5% for global SDR, and 2.5% for the fitted all-sky LDR. Further, a function representing the uncertainty in dependence of the radiation is assigned for each model. Validation of the model outputs shows that direct SDR is underestimated (the mean error (ME) is around −33 W m−2), while diffuse radiation is overestimated (ME around 19 W m−2). The root mean squared error (RMSE) scatters around 60 W m−2 for direct, and 40 W m−2 for diffuse SDR. The best behaviour is found, due to the compensating effects of direct and diffuse SDR, for global SDR with MEs around −13 W m−2 and RMSEs around 40 W m−2. The ME of the fitted all-sky LDR is around ±10 W m−2, and the RMSE goes up to 40 W m−2. This is obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning.


2020 ◽  
Vol 12 (11) ◽  
pp. 1834
Author(s):  
Boxiong Qin ◽  
Biao Cao ◽  
Hua Li ◽  
Zunjian Bian ◽  
Tian Hu ◽  
...  

Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical methods with the input of the MYD11/MYD21 (TE-MYD11/TE-MYD21), the hybrid methods with top-of-atmosphere (TOA) linear/nonlinear/artificial neural network regressions (TOA-LIN/TOA-NLIN/TOA-ANN), and the hybrid method with bottom-of-atmosphere (BOA) linear regression (BOA-LIN). The recently released MYD21 product and the BOA-LIN—a newly developed method that considers the spatial heterogeneity of the atmosphere—is used initially to estimate SULR. In addition, the four hybrid methods were compared with simulated datasets. All the six methods were evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Surface Radiation Budget Network (SURFRAD) in situ measurements. Simulation analysis shows that the BOA-LIN is the best one among four hybrid methods with accurate atmospheric profiles as input. Comparison of all the six methods shows that the TE-MYD21 performed the best, with a root mean square error (RMSE) and mean bias error (MBE) of 14.0 and −0.2 W/m2, respectively. The RMSE of BOA-LIN, TOA-NLIN, TOA-LIN, TOA-ANN, and TE-MYD11 are equal to 15.2, 16.1, 17.2, 21.2, and 18.5 W/m2, respectively. TE-MYD21 has a much better accuracy than the TE-MYD11 over barren surfaces (NDVI < 0.3) and a similar accuracy over non-barren surfaces (NDVI ≥ 0.3). BOA-LIN is more stable over varying water vapor conditions, compared to other hybrid methods. We conclude that this study provides a valuable reference for choosing the suitable estimation method in the SULR product generation.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 219
Author(s):  
William Wandji Nyamsi ◽  
Philippe Blanc ◽  
John A. Augustine ◽  
Antti Arola ◽  
Lucien Wald

A clear–sky method to estimate the photosynthetically active radiation (PAR) at the surface level in cloudless atmospheres is presented and validated. It uses a fast and accurate approximation adopted in several radiative transfer models, known as the k-distribution method and the correlated-k approximation, which gives a set of fluxes accumulated over 32 established wavelength intervals. A resampling technique, followed by a summation, are applied over the wavelength range [0.4, 0.7] µm in order to retrieve the PAR fluxes. The method uses as inputs the total column contents of ozone and water vapor, and optical properties of aerosols provided by the Copernicus Atmosphere Monitoring Service. To validate the method, its outcomes were compared to instantaneous global photosynthetic photon flux density (PPFD) measurements acquired at seven experimental sites of the Surface Radiation Budget Network (SURFRAD) located in various climates in the USA. The bias lies in the interval [−12, 61] µmol m−2 s−1 ([−1, 5] % in values relative to the means of the measurements at each station). The root mean square error ranges between 37 µmol m−2 s−1 (3%) and 82 µmol m−2 s−1 (6%). The squared correlation coefficient fluctuates from 0.97 to 0.99. This comparison demonstrates the high level of accuracy of the presented method, which offers an accurate estimate of PAR fluxes in cloudless atmospheres at high spatial and temporal resolutions useful for several bio geophysical models.


2017 ◽  
Vol 17 (22) ◽  
pp. 13559-13572 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (US) has increased by 0.58–1.0 Wm−2 a−1 over the 2000–2014 time frame, simultaneously with reductions in US aerosol optical depth (AOD) of 3.3–5.0  ×  10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing US aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000–2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear-sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 Wm−2 a−1 at Goodwin Creek, MS, and +0.93 Wm−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central US. The 1990–2015 trends in the NLDAS SWdn over the central US are also of a similar magnitude to our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central US are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the US, where improvements in air quality due to reductions in the aerosol burden could inadvertently pose an enhanced climate risk.


2021 ◽  
Author(s):  
Richard Müller ◽  
Uwe Pfeifroth

Abstract. Accurate solar surface irradiance data (SSI) is a prerequisite for efficient planning and operation of solar energy sys- tems. Respective data are also essential for climate monitoring and analysis. Satellite-based SSI has grown in importance over the last few decades. However, a retrieval method is needed to relate the measured radiances at the satellite to the solar surface irradiance. In a widespread classical approach, these radiances are used directly to derive the effective cloud albedo (CAL) as basis for the estimation of the solar surface irradiance. This approach has been already introduced and discussed in the early 1980s. Various approaches are briefly discussed and analyzed, including an overview of open questions and opportunities for improvement. Special emphasis is placed on the reflection of fundamental physical laws and atmospheric measurement tech- niques. In addition, atmospheric input data and key applications are briefly discussed. It is concluded that the well established observational-based CAL approach is still an excellent choice for the retrieval of the cloud transmission. The coupling with Look-Up-Table based clear sky models enables the estimation of solar surface irradiance with high accuracy and homogeneity. This could explain why, despite its age, the direct CAL approach is still used by key players in energy meteorology and the climate community. For the clear sky input data it is recommended to use ECMWF forecast and reanalysis data.


2020 ◽  
Author(s):  
Qi Zeng ◽  
Jie Cheng ◽  
Feng Yang

&lt;p&gt;Surface longwave (LW) radiation plays an important rolein global climatic change, which is consist of surface longwave upward radiation (LWUP), surface longwave downward radiation (LWDN) and surface longwave net radiation (LWNR). Numerous studies have been carried out to estimate LWUP or LWDN from remote sensing data, and several satellite LW radiation products have been released, such as the International Satellite Cloud Climatology Project&amp;#8208;Flux Data (ISCCP&amp;#8208;FD), the Global Energy and Water cycle Experiment&amp;#8208;Surface Radiation Budget (GEWEX&amp;#8208;SRB) and the Clouds and the Earth&amp;#8217;s Radiant Energy System&amp;#8208;Gridded Radiative Fluxes and Clouds (CERES&amp;#8208;FSW). But these products share the common features of coarse spatial resolutions (100-280 km) and lower validation accuracy.&lt;/p&gt;&lt;p&gt;Under such circumstance, we developed the methods of estimating long-term high spatial resolution all sky&amp;#160; instantaneous LW radiation, and produced the corresponding products from MODIS data from 2000 through 2018 (Terra and Aqua), named as Global LAnd Surface Satellite (GLASS) Longwave Radiation product, which can be free freely downloaded from the website (http://glass.umd.edu/Download.html).&lt;/p&gt;&lt;p&gt;In this article, ground measurements collected from 141 sites in six independent networks (AmerciFlux, AsiaFlux, BSRN, CEOP, HiWATER-MUSOEXE and TIPEX-III) are used to evaluate the clear-sky GLASS LW radiation products at global scale. The bias and RMSE is -4.33 W/m&lt;sup&gt;2 &lt;/sup&gt;and 18.15 W/m&lt;sup&gt;2 &lt;/sup&gt;for LWUP, -3.77 W/m&lt;sup&gt;2 &lt;/sup&gt;and 26.94 W/m&lt;sup&gt;2&lt;/sup&gt; for LWDN, and 0.70 W/m&lt;sup&gt;2 &lt;/sup&gt;and 26.70 W/m&lt;sup&gt;2&lt;/sup&gt; for LWNR, respectively. Compared with validation results of the above mentioned three LW radiation products, the overall accuracy of GLASS LW radiation product is much better. We will continue to improve the retrieval algorithms and update the products accordingly.&lt;/p&gt;


2017 ◽  
Author(s):  
Daniel H. Cusworth ◽  
Loretta J. Mickley ◽  
Eric M. Leibensperger ◽  
Michael J. Iacono

Abstract. In situ surface observations show that downward surface solar radiation (SWdn) over the central and southeastern United States (U.S.) has increased by 0.58–1.0 W m−2 a−1 over the 2000–2014 timeframe, simultaneously with reductions in U.S. aerosol optical depth (AOD) of 3.3–5.0 × 10−3 a−1. Establishing a link between these two trends, however, is challenging due to complex interactions between aerosols, clouds, and radiation. Here we investigate the clear-sky aerosol–radiation effects of decreasing U.S. aerosols on SWdn and other surface variables by applying a one-dimensional radiative transfer to 2000 2014 measurements of AOD at two Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. Observations characterized as clear–sky may in fact include the effects of thin cirrus clouds, and we consider these effects by imposing satellite data from the Clouds and Earth's Radiant Energy System (CERES) into the radiative transfer model. The model predicts that 2000–2014 trends in aerosols may have driven clear-sky SWdn trends of +1.35 W m−2 a−1 at Goodwin Creek, MS, and +0.93 W m−2 a−1 at Bondville, IL. While these results are consistent in sign with observed trends, a cross-validated multivariate regression analysis shows that AOD reproduces 20–26 % of the seasonal (June–September, JJAS) variability in clear-sky direct and diffuse SWdn at Bondville, IL, but none of the JJAS variability at Goodwin Creek, MS. Using in situ soil and surface flux measurements from the Ameriflux network and Illinois Climate Network (ICN) together with assimilated meteorology from the North American Land Data Assimilation System (NLDAS), we find that sunnier summers tend to coincide with increased surface air temperature and soil moisture deficits in the central U.S. The 1990–2015 trends in the NLDAS SWdn over the central U.S. are also of a similar magnitude as our modeled 2000–2014 clear-sky trends. Taken together, these results suggest that climate and regional hydrology in the central U.S. are sensitive to the recent reductions in aerosol concentrations. Our work has implications for severely polluted regions outside the U.S., where improvements in air quality due to reductions in the aerosol burden could inadvertently increase vulnerability to drought.


2013 ◽  
Vol 52 (7) ◽  
pp. 1525-1539 ◽  
Author(s):  
Rosie Howard ◽  
Roland Stull

AbstractAccurately calculating the surface radiation budget of a groomed ski run is crucial when determining snow surface temperature and other snow-related variables, knowledge of which is important for ski racing. Downwelling longwave radiation can compose a large part of the surface radiation budget in mountainous terrain. At a location on a ski run, a portion of the downwelling longwave radiation comes from the sky and a portion comes from tall evergreen trees. Infrared photographs taken during daytime at a ski run on Whistler Mountain, British Columbia, Canada, for a clear-sky day in February 2012 show that trees can enhance the downwelling longwave radiation at the center of the ski run considerably, with a maximum estimated enhancement of 75.6 ± 16.8 W m−2 for trees in direct sunlight. The average needle and trunk brightness temperatures from the IR photographs were correlated with measured meteorological data. Regressions were found to allow estimation of longwave radiation from trees using nearby routine meteorological data. Absolute errors in tree longwave radiation estimations using the derived trunk and needle temperatures did not exceed 4 W m−2. The effect of the intervening air upon longwave radiative transfer between trees and the point of interest on the ski run was found to be small for these very short pathlengths of 50 m or less. These results can be used to improve calculations of the surface radiation budget of a groomed ski run under clear skies.


2012 ◽  
Vol 51 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Jun Qin ◽  
Kun Yang ◽  
Shunlin Liang ◽  
Wenjun Tang

AbstractPhotosynthetically active radiation (PAR) is absorbed by plants to carry out photosynthesis. Its estimation is important for many applications such as ecological modeling. In this study, a broadband transmittance scheme for solar radiation at the PAR band is developed to estimate clear-sky PAR values. The influence of clouds is subsequently taken into account through sunshine-duration data. This scheme is examined without local calibration against the observed PAR values under both clear- and cloudy-sky conditions at seven widely distributed Surface Radiation Budget Network (SURFRAD) stations. The results indicate that the scheme can estimate the daily mean PAR at these seven stations under all-sky conditions with root-mean-square error and mean bias error values ranging from 6.03 to 6.83 W m−2 and from −2.86 to 1.03 W m−2, respectively. Further analyses indicate that the scheme can estimate PAR values well with globally available aerosol and ozone datasets. This suggests that the scheme can be applied to regions for which observed aerosol and ozone data are not available.


2013 ◽  
Vol 52 (7) ◽  
pp. 1540-1553 ◽  
Author(s):  
Rosie Howard ◽  
Roland Stull

AbstractThe surface radiation budget of a groomed ski run is important to ski racing. Variables such as snow-surface temperature and liquid water content depend upon the surface radiation budget and are crucial to preparing fast skis. This case study focuses on downwelling longwave radiation, measurements of which were made at a point on a ski run on Whistler Mountain, British Columbia, Canada, throughout a 5-day clear-sky intensive observation period. Tall trees often dominate the horizon of a point on a ski run, and so contributions to total downwelling longwave radiation from trees and sky were treated separately. The “LWRAD” longwave radiative flux model estimated the total downwelling longwave radiation by first calculating thermal contributions from the trees, incorporating regressions for tree temperature that use routine meteorological measurements. Contributions from each azimuth direction were determined with horizon-elevation angles from a theodolite survey. Thermal emissions were weighted accordingly and summed. Sky contributions were estimated using the “libRadtran” radiative transfer model with input of local atmospheric profiles of temperature and humidity and were added to tree emissions. Two clear-sky emissivity parameterizations using screen-height measurements were tested for comparison. LWRAD total downwelling longwave radiation varies between 235 and 265 W m−2 and compares well to measurements, with correlation coefficient squared (r2) of 0.96. These results can be used to improve estimates of downwelling longwave radiation for a groomed ski run.


Sign in / Sign up

Export Citation Format

Share Document