scholarly journals Remote Sensing of solar surface radiation – A reflection of concepts, applications and input data based on experience with the effective cloud albedo

2021 ◽  
Author(s):  
Richard Müller ◽  
Uwe Pfeifroth

Abstract. Accurate solar surface irradiance data (SSI) is a prerequisite for efficient planning and operation of solar energy sys- tems. Respective data are also essential for climate monitoring and analysis. Satellite-based SSI has grown in importance over the last few decades. However, a retrieval method is needed to relate the measured radiances at the satellite to the solar surface irradiance. In a widespread classical approach, these radiances are used directly to derive the effective cloud albedo (CAL) as basis for the estimation of the solar surface irradiance. This approach has been already introduced and discussed in the early 1980s. Various approaches are briefly discussed and analyzed, including an overview of open questions and opportunities for improvement. Special emphasis is placed on the reflection of fundamental physical laws and atmospheric measurement tech- niques. In addition, atmospheric input data and key applications are briefly discussed. It is concluded that the well established observational-based CAL approach is still an excellent choice for the retrieval of the cloud transmission. The coupling with Look-Up-Table based clear sky models enables the estimation of solar surface irradiance with high accuracy and homogeneity. This could explain why, despite its age, the direct CAL approach is still used by key players in energy meteorology and the climate community. For the clear sky input data it is recommended to use ECMWF forecast and reanalysis data.

2012 ◽  
Vol 12 (11) ◽  
pp. 5077-5098 ◽  
Author(s):  
S. Gubler ◽  
S. Gruber ◽  
R. S. Purves

Abstract. As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.


Author(s):  
Aron Habte ◽  
Manajit Sengupta ◽  
Stephen Wilcox

The purpose of this study is two-fold: 1) To examine the performance of the Global Solar Insolation Project (GSIP) physics-based model in characterizing global horizontal solar radiation across the United States by comparing to the ground measured data, and 2) to examine improvements of the GSIP data to address temporal and spatial variations. The study enumerates and examines the spatial and temporal limitations of the GSIP model. Most comparisons demonstrate relatively good statistical agreement. However, the methodology used in the satellite model to distinguish microclimate conditions presents significant challenges, and the model requires refinement in addressing aerosol estimates, water vapor estimates, and clear sky optical properties. Satellite derived datasets are only available at half-hour intervals. Surface measurement can easily be made at temporal resolution in the order of seconds. Therefore intra-hour variability, an important quantity for understanding how power production in power plants will vary, cannot be directly derived from satellites. This paper illustrates how intra-hour variability in ground measurements cannot be captured by the satellite based datasets. We also discuss the potential for improved next-generation geostationary satellite data to improve the accuracy of surface radiation estimates.


Data ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 35
Author(s):  
Jonas Ardö

Earth observation data provide useful information for the monitoring and management of vegetation- and land-related resources. The Framework for Operational Radiometric Correction for Environmental monitoring (FORCE) was used to download, process and composite Sentinel-2 data from 2018–2020 for Uganda. Over 16,500 Sentinel-2 data granules were downloaded and processed from top of the atmosphere reflectance to bottom of the atmosphere reflectance and higher-level products, totalling > 9 TB of input data. The output data include the number of clear sky observations per year, the best available pixel composite per year and vegetation indices (mean of EVI and NDVI) per quarter. The study intention was to provide analysis-ready data for all of Uganda from Sentinel-2 at 10 m spatial resolution, allowing users to bypass some basic processing and, hence, facilitate environmental monitoring.


Author(s):  
S. V. S. Sai Krishna ◽  
P. Manavalan ◽  
P. V. N. Rao

Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The first approach computes net shortwave radiation using daily insolation product of Kalpana VHRR and 15 days time composited broadband albedo product of Oceansat OCM2. The net outgoing longwave radiation is computed using Stefan Boltzmann equation corrected for humidity and cloudiness. In the second approach, instantaneous clear-sky net-shortwave radiation is estimated using computed clear-sky incoming shortwave radiation and the gridded MODIS 16-day time composited albedo product. The net longwave radiation is obtained by estimating outgoing and incoming longwave radiation fluxes, independently. In this, MODIS derived surface emissivity and skin temperature parameters are used for estimating outgoing longwave radiation component. In both the approaches, surface air temperature data required for estimation of net longwave radiation fluxes are extracted from India Meteorological Department’s (IMD) Automatic Weather Station (AWS) records. Estimates by the two different approaches are evaluated by comparing daily net radiation fluxes with CERES based estimates corresponding to the sample days, through statistical measures. The estimated all sky daily net radiation using the first approach compared well with CERES SYN1deg daily average net radiation with r<sup>2</sup> values of the order of 0.7 and RMS errors of the order of 8&ndash;16 w/m<sup>2</sup>.


2019 ◽  
Vol 11 (4) ◽  
pp. 1905-1915 ◽  
Author(s):  
Wenjun Tang ◽  
Kun Yang ◽  
Jun Qin ◽  
Xin Li ◽  
Xiaolei Niu

Abstract. The recent release of the International Satellite Cloud Climatology Project (ISCCP) HXG cloud products and new ERA5 reanalysis data enabled us to produce a global surface solar radiation (SSR) dataset: a 16-year (2000–2015) high-resolution (3 h, 10 km) global SSR dataset using an improved physical parameterization scheme. The main inputs were cloud optical depth from ISCCP-HXG cloud products; the water vapor, surface pressure and ozone from ERA5 reanalysis data; and albedo and aerosol from Moderate Resolution Imaging Spectroradiometer (MODIS) products. The estimated SSR data were evaluated against surface observations measured at 42 stations of the Baseline Surface Radiation Network (BSRN) and 90 radiation stations of the China Meteorological Administration (CMA). Validation against the BSRN data indicated that the mean bias error (MBE), root mean square error (RMSE) and correlation coefficient (R) for the instantaneous SSR estimates at 10 km scale were −11.5 W m−2, 113.5 W m−2 and 0.92, respectively. When the estimated instantaneous SSR data were upscaled to 90 km, its error was clearly reduced, with RMSE decreasing to 93.4 W m−2 and R increasing to 0.95. For daily SSR estimates at 90 km scale, the MBE, RMSE and R at the BSRN were −5.8 W m−2, 33.1 W m−2 and 0.95, respectively. These error metrics at the CMA radiation stations were 2.1 W m−2, 26.9 W m−2 and 0.95, respectively. Comparisons with other global satellite radiation products indicated that our SSR estimates were generally better than those of the ISCCP flux dataset (ISCCP-FD), the global energy and water cycle experiment surface radiation budget (GEWEX-SRB), and the Earth's Radiant Energy System (CERES). Our SSR dataset will contribute to the land-surface process simulations and the photovoltaic applications in the future. The dataset is available at  https://doi.org/10.11888/Meteoro.tpdc.270112 (Tang, 2019).


2021 ◽  
Author(s):  
George Datseris ◽  
Bjorn Stevens

&lt;p&gt;Radiation measurements at the top of the atmosphere show that the two hemispheres of Earth reflect the same amount of shortwave radiation in the long time average (so-called hemispheric albedo symmetry). Here we try to find the origin of this symmetry by analyzing radiation data directly, as well as cloud properties. The radiation data, while being mostly noise, hint that a hemispheric communication mechanism is likely but do not provide enough information to identify it. Cloud properties allow us to define an effective cloud albedo field, much more useful than the commonly used cloud area fraction. Based on that we first show that extra cloud albedo of the SH exactly compensates the extra surface albedo of the NH. We then identify that this this compensation comes almost exclusively from the storm tracks of the extratropics. We close discussing the importance of approaching planetary albedo as a whole and open questions that remain.&lt;/p&gt;


2020 ◽  
Vol 12 (11) ◽  
pp. 1834
Author(s):  
Boxiong Qin ◽  
Biao Cao ◽  
Hua Li ◽  
Zunjian Bian ◽  
Tian Hu ◽  
...  

Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical methods with the input of the MYD11/MYD21 (TE-MYD11/TE-MYD21), the hybrid methods with top-of-atmosphere (TOA) linear/nonlinear/artificial neural network regressions (TOA-LIN/TOA-NLIN/TOA-ANN), and the hybrid method with bottom-of-atmosphere (BOA) linear regression (BOA-LIN). The recently released MYD21 product and the BOA-LIN—a newly developed method that considers the spatial heterogeneity of the atmosphere—is used initially to estimate SULR. In addition, the four hybrid methods were compared with simulated datasets. All the six methods were evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Surface Radiation Budget Network (SURFRAD) in situ measurements. Simulation analysis shows that the BOA-LIN is the best one among four hybrid methods with accurate atmospheric profiles as input. Comparison of all the six methods shows that the TE-MYD21 performed the best, with a root mean square error (RMSE) and mean bias error (MBE) of 14.0 and −0.2 W/m2, respectively. The RMSE of BOA-LIN, TOA-NLIN, TOA-LIN, TOA-ANN, and TE-MYD11 are equal to 15.2, 16.1, 17.2, 21.2, and 18.5 W/m2, respectively. TE-MYD21 has a much better accuracy than the TE-MYD11 over barren surfaces (NDVI < 0.3) and a similar accuracy over non-barren surfaces (NDVI ≥ 0.3). BOA-LIN is more stable over varying water vapor conditions, compared to other hybrid methods. We conclude that this study provides a valuable reference for choosing the suitable estimation method in the SULR product generation.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 219
Author(s):  
William Wandji Nyamsi ◽  
Philippe Blanc ◽  
John A. Augustine ◽  
Antti Arola ◽  
Lucien Wald

A clear–sky method to estimate the photosynthetically active radiation (PAR) at the surface level in cloudless atmospheres is presented and validated. It uses a fast and accurate approximation adopted in several radiative transfer models, known as the k-distribution method and the correlated-k approximation, which gives a set of fluxes accumulated over 32 established wavelength intervals. A resampling technique, followed by a summation, are applied over the wavelength range [0.4, 0.7] µm in order to retrieve the PAR fluxes. The method uses as inputs the total column contents of ozone and water vapor, and optical properties of aerosols provided by the Copernicus Atmosphere Monitoring Service. To validate the method, its outcomes were compared to instantaneous global photosynthetic photon flux density (PPFD) measurements acquired at seven experimental sites of the Surface Radiation Budget Network (SURFRAD) located in various climates in the USA. The bias lies in the interval [−12, 61] µmol m−2 s−1 ([−1, 5] % in values relative to the means of the measurements at each station). The root mean square error ranges between 37 µmol m−2 s−1 (3%) and 82 µmol m−2 s−1 (6%). The squared correlation coefficient fluctuates from 0.97 to 0.99. This comparison demonstrates the high level of accuracy of the presented method, which offers an accurate estimate of PAR fluxes in cloudless atmospheres at high spatial and temporal resolutions useful for several bio geophysical models.


2009 ◽  
Vol 26 (4) ◽  
pp. 704-718 ◽  
Author(s):  
Bart De Paepe ◽  
Steven Dewitte

Abstract The authors present a new algorithm to retrieve aerosol optical depth (AOD) over a desert using the window channels centered at 8.7, 10.8, and 12.0 μm of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat Second Generation satellite. The presence of dust aerosols impacts the longwave outgoing radiation, allowing the aerosols over the desert surfaces to be detected in the thermal infrared (IR) wavelengths. To retrieve the aerosol properties over land, the surface contribution to the satellite radiance measured at the top of the atmosphere has to be taken into account. The surface radiation depends on the surface temperature, which is characterized by a strong diurnal variation over the desert, and the surface emissivity, which is assumed to be constant over a time span of 24 h. The surface emissivity is based on clear-sky observations that are corrected for atmospheric absorption and emission. The clear-sky image is a composite of pixels that is characterized by the highest brightness temperature (BT) of the SEVIRI channel at 10.8 μm, and by a negative BT difference between the channels at 8.7 and 10.8 μm. Because of the lower temperatures of clouds and aerosols compared to clear-sky conditions, the authors assume that the selected pixel values are obtained for a clear-sky day. A forward model is used to simulate the thermal IR radiation transfer in the dust layer. The apparent surface radiation for the three window channels in the presence of aerosols is calculated as a function of the surface emissivity and the surface temperature, the aerosol layer temperature, and the AOD for different aerosol loadings. From these simulations two emissivity ratios, which are stored in lookup tables (LUT), are calculated. The retrieval algorithm consists of processing the clear-sky image and computing the surface emissivity, processing the instantaneous image, and computing the apparent surface radiation for the three window channels. The two emissivity ratios are computed using the radiances at 8.7 and 10.8 μm and at 8.7 and 12.0 μm, respectively. The SEVIRI AOD is obtained by the inversion of these emissivity ratios using the corresponding LUT. The algorithm is applied to a minor dust event over the Sahara between 19 and 22 June 2007. For the validation the SEVIRI AOD is compared with the AOD from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) along the satellite track.


Sign in / Sign up

Export Citation Format

Share Document