scholarly journals Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data

2012 ◽  
Vol 12 (17) ◽  
pp. 7977-7993 ◽  
Author(s):  
A. Lana ◽  
R. Simó ◽  
S. M. Vallina ◽  
J. Dachs

Abstract. Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays an important role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of the temporal variability of (a) production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b) production fluxes of secondary organic aerosols from biogenic organic volatiles; (c) emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d) emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global monthly estimates of these fluxes were correlated to series of potential cloud condensation nuclei (CCN) numbers derived from satellite (MODIS). More detailed comparisons among weekly series of estimated fluxes and satellite-derived cloud droplet effective radius (re) data were conducted at locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that positive correlation to CCN numbers and negative correlation to re were common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt) showed widespread positive correlations to CCN only at low latitudes. Correlations to re were more variable, non-significant or positive, suggesting that, despite contributing to large shares of the marine aerosol mass, primary aerosols are not widespread major drivers of the variability of cloud microphysics. Validation against ground measurements pointed out that the parameterizations used captured fairly well the variability of aerosol production fluxes in most cases, yet some caution is warranted because there is room for further improvement, particularly for primary organic aerosol. Uncertainties and synergies are discussed, and recommendations of research needs are given.

2012 ◽  
Vol 12 (2) ◽  
pp. 3655-3694
Author(s):  
A. Lana ◽  
R. Simó ◽  
S. M. Vallina ◽  
J. Dachs

Abstract. Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol-cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays a role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of (a) production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b) production fluxes of secondary organic aerosols from biogenic organic volatiles; (c) emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d) emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global weekly estimates of these fluxes were correlated to series of cloud droplet effective radius data derived from satellite (MODIS). Similar analyses were conducted in more detail at 6 locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that negative correlation was common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt) showed more variable, non-significant or positive correlations, indicating that, despite contributing to large shares of the marine aerosol mass, they are not major drivers of the variability of cloud microphysics. Uncertainties and synergisms are discussed, and recommendations of research needs are given.


2018 ◽  
Vol 75 (10) ◽  
pp. 3365-3379 ◽  
Author(s):  
Gustavo C. Abade ◽  
Wojciech W. Grabowski ◽  
Hanna Pawlowska

This paper discusses the effects of cloud turbulence, turbulent entrainment, and entrained cloud condensation nuclei (CCN) activation on the evolution of the cloud droplet size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events modeled as a random process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet activation and growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate, CCN concentration, and the mean fraction of environmental air entrained in an event are all specified as independent external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. These are either unactivated CCN or cloud droplets that grow from activated CCN. The model accounts for the addition of environmental CCN into the cloud by entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using the classical linear relaxation to the mean model. We show that turbulence plays an important role in aiding entrained CCN to activate, and thus broadening the droplet size distribution. These findings are consistent with previous large-eddy simulations (LESs) that consider the impact of variable droplet growth histories on the droplet size spectra in small cumuli. The scheme developed in this work is ready to be used as a stochastic subgrid-scale scheme in LESs of natural clouds.


2011 ◽  
Vol 11 (18) ◽  
pp. 9485-9501 ◽  
Author(s):  
J. V. Martins ◽  
A. Marshak ◽  
L. A. Remer ◽  
D. Rosenfeld ◽  
Y. J. Kaufman ◽  
...  

Abstract. Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.


2017 ◽  
Vol 74 (10) ◽  
pp. 3145-3166 ◽  
Author(s):  
K. Gayatri ◽  
S. Patade ◽  
T. V. Prabha

Abstract The Weather Research and Forecasting (WRF) Model coupled with a spectral bin microphysics (SBM) scheme is used to investigate aerosol effects on cloud microphysics and precipitation over the Indian peninsular region. The main emphasis of the study is in comparing simulated cloud microphysical structure with in situ aircraft observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX). Aerosol–cloud interaction over the rain-shadow region is investigated with observed and simulated size distribution spectra of cloud droplets and ice particles in monsoon clouds. It is shown that size distributions as well as other microphysical characteristics obtained from simulations such as liquid water content, cloud droplet effective radius, cloud droplet number concentration, and thermodynamic parameters are in good agreement with the observations. It is seen that in clouds with high cloud condensation nuclei (CCN) concentrations, snow and graupel size distribution spectra were broader compared to clouds with low concentrations of CCN, mainly because of enhanced riming in the presence of a large number of droplets with a diameter of 10–30 μm. The Hallett–Mossop ice multiplication process is illustrated to have an impact on snow and graupel mass. The changes in CCN concentrations have a strong effect on cloud properties over the domain, amounts of cloud water, and the glaciation of the clouds, but the effects on surface precipitation are small when averaged over a large area. Overall enhancement of cold-phase cloud processes in the high-CCN case contributed to slight enhancement (5%) in domain-averaged surface precipitation.


2013 ◽  
Vol 13 (20) ◽  
pp. 10385-10396 ◽  
Author(s):  
G. S. Stuart ◽  
R. G. Stevens ◽  
A.-I. Partanen ◽  
A. K. L. Jenkins ◽  
H. Korhonen ◽  
...  

Abstract. The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (marine cloud brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloud- and climate-modeling studies is that all sea spray was emitted uniformly into some oceanic grid boxes, and thus these studies did not account for subgrid aerosol coagulation within the sea-spray plumes. We explore the evolution of these sea-salt plumes using a multi-shelled Gaussian plume model with size-resolved aerosol coagulation. We determine how the final number of particles depends on meteorological conditions, including wind speed and boundary-layer stability, as well as the emission rate and size distribution of aerosol emitted. Under previously proposed injection rates and typical marine conditions, we find that the number of aerosol particles is reduced by over 50%, but this reduction varies from under 10% to over 90% depending on the conditions. We provide a computationally efficient parameterization for cloud-resolving and global-scale models to account for subgrid-scale coagulation, and we implement this parameterization in a global-scale aerosol-climate model. While designed to address subgrid-scale coagulation of sea-salt particles, the parameterization is generally applicable for coagulation of subgrid-scale aerosol from point sources. We find that accounting for this subgrid-scale coagulation reduces cloud droplet number concentrations by 46% over emission regions, and reduces the global mean radiative flux perturbation from −1.5 W m−2 to −0.8 W m−2.


2012 ◽  
Vol 12 (19) ◽  
pp. 8911-8949 ◽  
Author(s):  
K. Zhang ◽  
D. O'Donnell ◽  
J. Kazil ◽  
P. Stier ◽  
S. Kinne ◽  
...  

Abstract. This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This leads to a general increase in the number concentration of smaller particles over the oceans in HAM2, as reflected by the higher Ångström parameters. Evaluation against observation reveals that in terms of model performance, main improvements in HAM2 include a marked decrease of the systematic negative bias in the absorption aerosol optical depth, as well as smaller biases over the oceans in Ångström parameter and in the accumulation mode number concentration. The simulated geographical distribution of aerosol optical depth (AOD) is better correlated with the MODIS data, while the surface aerosol mass concentrations are very similar to those in the old version. The total aerosol water content in HAM2 is considerably closer to the multi-model average from Phase I of the AeroCom intercomparison project. Model deficiencies that require further efforts in the future include (i) positive biases in AOD over the ocean, (ii) negative biases in AOD and aerosol mass concentration in high-latitude regions, and (iii) negative biases in particle number concentration, especially that of the Aitken mode, in the lower troposphere in heavily polluted regions.


2011 ◽  
Vol 24 (7) ◽  
pp. 1897-1912 ◽  
Author(s):  
Wojciech W. Grabowski ◽  
Hugh Morrison

Abstract This paper extends the previous cloud-resolving modeling study concerning the impact of cloud microphysics on convective–radiative quasi equilibrium (CRQE) over a surface with fixed characteristics and prescribed solar input, both mimicking the mean conditions on earth. The current study applies sophisticated double-moment warm-rain and ice microphysics schemes, which allow for a significantly more realistic representation of the impact of aerosols on precipitation processes and on the coupling between clouds and radiative transfer. Two contrasting cloud condensation nuclei (CCN) characteristics are assumed, representing pristine and polluted conditions, as well as contrasting representations of the effects of entrainment and mixing on the mean cloud droplet size. In addition, four sets of sensitivity simulations are also performed with changes that provide a reference for the main simulation set. As in the previous study, the CRQE mimics the estimates of globally and annually averaged water and energy fluxes across the earth’s atmosphere. There are some differences from the previous study, however, consistent with the slightly lower water vapor content in the troposphere and significantly reduced lower-tropospheric cloud fraction in current simulations. There is also a significant reduction of the difference between the pristine and polluted cases, from ∼20 to ∼4 W m−2 at the surface from ∼20 to ∼9 W m−2 at the top of the atmosphere (TOA). The difference between the homogeneous and extremely inhomogeneous mixing scenarios, ∼20 W m−2 in the previous study, is reduced to a mere 2 (1) W m−2 at the surface (TOA). An unexpected difference between the previous and current simulations is the lower Bowen ratio of the surface heat flux, the partitioning of the total flux into sensible and latent components. It is shown that most of the change comes from the difference in the representation of rain evaporation in the subcloud layer in the single- and double-moment microphysics schemes. The difference affects the mean air temperature and humidity near the surface, and thus the Bowen ratio. The differences between the various simulations are discussed, contrasting the process-level approach with the impact of cloud microphysics on the quasi-equilibrium state with a more appropriate system dynamics approach. The key distinction is that the latter includes the interactions among all the processes in the modeled system.


2011 ◽  
Vol 11 (7) ◽  
pp. 18853-18899 ◽  
Author(s):  
N. Meskhidze ◽  
J. Xu ◽  
B. Gantt ◽  
Y. Zhang ◽  
A. Nenes ◽  
...  

Abstract. Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS−) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS− (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increase and decrease in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to sea-salt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.


Sign in / Sign up

Export Citation Format

Share Document