scholarly journals An examination of two pathways to tropical cyclogenesis occurring in idealized simulations with a cloud-resolving numerical model

2013 ◽  
Vol 13 (12) ◽  
pp. 5999-6022 ◽  
Author(s):  
M. E. Nicholls ◽  
M. T. Montgomery

Abstract. Simulations are conducted with a cloud-resolving numerical model to examine the transformation of a weak incipient mid-level cyclonic vortex into a tropical cyclone. Results demonstrate that two distinct pathways are possible and that development along a particular pathway is sensitive to model physics and initial conditions. One pathway involves a steady increase of the surface winds to tropical cyclone strength as the radius of maximum winds gradually decreases. A notable feature of this evolution is the creation of small-scale lower tropospheric cyclonic vorticity anomalies by deep convective towers and subsequent merger and convergence by the low-level secondary circulation. The second pathway also begins with a strengthening low-level circulation, but eventually a significantly stronger mid-level circulation develops. Cyclogenesis occurs subsequently when a small-scale surface concentrated vortex forms abruptly near the center of the larger-scale circulation. The small-scale vortex is warm core throughout the troposphere and results in a fall in local surface pressure of a few millibars. It usually develops rapidly, undergoing a modest growth to form a small tropical cyclone. Many of the simulated systems approach or reach tropical cyclone strength prior to development of a prominent mid-level vortex so that the subsequent formation of a strong small-scale surface concentrated vortex in these cases could be considered intensification rather than genesis. Experiments are performed to investigate the dependence on the inclusion of the ice phase, radiation, the size and strength of the incipient mid-level vortex, the amount of moisture present in the initial vortex, and the sea surface temperature. Notably, as the sea surface temperature is raised, the likelihood of development along the second pathway is increased. This appears to be related to an increased production of ice. The sensitivity of the pathway taken to model physics and initial conditions revealed by these experiments raise the possibility that the solution to this initial value problem is near a bifurcation point. Future improvements to model parameterizations and more accurate observations of the transformation of disturbances to tropical cyclones should clarify the conditions that favor a particular pathway when starting from a mid-level vortex.

2013 ◽  
Vol 13 (1) ◽  
pp. 765-825 ◽  
Author(s):  
M. E. Nicholls ◽  
M. T. Montgomery

Abstract. Simulations are conducted with a cloud-resolving numerical model to examine the transformation of a weak incipient mid-level cyclonic vortex into a tropical cyclone. Results demonstrate that two distinct pathways are possible and that development along a particular pathway is sensitive to model physics and initial conditions. One pathway involves a steady increase of the surface winds to tropical cyclone strength as the radius of maximum winds gradually decreases. A notable feature of this evolution is the creation of small-scale lower tropospheric cyclonic vorticity anomalies by deep convective towers and subsequent merger and convergence by the low-level secondary circulation. The second pathway also begins with a strengthening low-level circulation, but eventually a significantly stronger mid-level circulation develops. Cyclogenesis occurs subsequently when a small-scale surface concentrated vortex forms abruptly near the center of the larger-scale circulation. The small-scale vortex is warm core throughout the troposphere and results in a local surface pressure fall of a few millibars. It usually develops rapidly, undergoing a modest growth to form a small tropical cyclone. Many of the simulated systems approach or reach tropical cyclone strength prior to development of a prominent mid-level vortex so that the subsequent formation of a strong small-scale surface concentrated vortex in these cases could be considered intensification rather than genesis. Experiments are performed to investigate the dependence on the inclusion of the ice phase, radiation, the size and strength of the incipient mid-level vortex, the amount of moisture present in the initial vortex, and the sea surface temperature. Notably, as the sea surface temperature is raised, the likelihood of development along the second pathway is increased. This appears to be related to an increased production of ice. The sensitivity of the pathway taken to model physics and initial conditions revealed by these experiments raise the possibility that the solution to this initial value problem is near a bifurcation point. Future improvements to model parameterizations and more accurate observations of the transformation of disturbances to tropical cyclones should clarify the conditions that favor a particular pathway when starting from a mid-level vortex.


2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

2018 ◽  
Vol 146 (7) ◽  
pp. 2065-2088 ◽  
Author(s):  
Fei He ◽  
Derek J. Posselt ◽  
Naveen N. Narisetty ◽  
Colin M. Zarzycki ◽  
Vijayan N. Nair

Abstract This work demonstrates the use of Sobol’s sensitivity analysis framework to examine multivariate input–output relationships in dynamical systems. The methodology allows simultaneous exploration of the effect of changes in multiple inputs, and accommodates nonlinear interaction effects among parameters in a computationally affordable way. The concept is illustrated via computation of the sensitivities of atmospheric general circulation model (AGCM)-simulated tropical cyclones to changes in model initial conditions. Specifically, Sobol’s variance-based sensitivity analysis is used to examine the response of cyclone intensity, cloud radiative forcing, cloud content, and precipitation rate to changes in initial conditions in an idealized AGCM-simulated tropical cyclone (TC). Control factors of interest include the following: initial vortex size and intensity, environmental sea surface temperature, vertical lapse rate, and midlevel relative humidity. The sensitivity analysis demonstrates systematic increases in TC intensity with increasing sea surface temperature and atmospheric temperature lapse rates, consistent with many previous studies. However, there are nonlinear interactions among control factors that affect the response of the precipitation rate, cloud content, and radiative forcing. In addition, sensitivities to control factors differ significantly when the model is run at different resolution, and coarse-resolution simulations are unable to produce a realistic TC. The results demonstrate the effectiveness of a quantitative sensitivity analysis framework for the exploration of dynamic system responses to perturbations, and have implications for the generation of ensembles.


2015 ◽  
Vol 28 (8) ◽  
pp. 2945-2967 ◽  
Author(s):  
Timothy A. Myers ◽  
Joel R. Norris

Abstract Climate models’ simulation of clouds over the eastern subtropical oceans contributes to large uncertainties in projected cloud feedback to global warming. Here, interannual relationships of cloud radiative effect and cloud fraction to meteorological variables are examined in observations and in models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively). In observations, cooler sea surface temperature, a stronger estimated temperature inversion, and colder horizontal surface temperature advection are each associated with larger low-level cloud fraction and increased reflected shortwave radiation. A moister free troposphere and weaker subsidence are each associated with larger mid- and high-level cloud fraction and offsetting components of shortwave and longwave cloud radiative effect. It is found that a larger percentage of CMIP5 than CMIP3 models simulate the wrong sign or magnitude of the relationship of shortwave cloud radiative effect to sea surface temperature and estimated inversion strength. Furthermore, most models fail to produce the sign of the relationship between shortwave cloud radiative effect and temperature advection. These deficiencies are mostly, but not exclusively, attributable to errors in the relationship between low-level cloud fraction and meteorology. Poor model performance also arises due to errors in the response of mid- and high-level cloud fraction to variations in meteorology. Models exhibiting relationships closest to observations tend to project less solar reflection by clouds in the late twenty-first century and have higher climate sensitivities than poorer-performing models. Nevertheless, the intermodel spread of climate sensitivity is large even among these realistic models.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


Sign in / Sign up

Export Citation Format

Share Document